light limitation
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 60)

H-INDEX

41
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Chiho Sukigara ◽  
Ryuichiro Inoue ◽  
Kanako Sato ◽  
Yoshihisa Mino ◽  
Takeyoshi Nagai ◽  
...  

Abstract. To investigate changes in ocean structure during the spring transition and responses of biological activity, two BGC-Argo floats equipped with oxygen, fluorescence (to estimate chlorophyll a concentration – Chl a), backscatter (to estimate particulate organic carbon concentration – [POC]), and nitrate sensors conducted daily vertical profiles of the water column from a depth of 2000 m to the sea surface in the western North Pacific from January to April of 2018. Data for calibrating each sensor were obtained via shipboard sampling that occurred when the floats were deployed and recovered. During the float-deployment periods, repeated meteorological disturbances passed over the study area and caused the mixed layer to deepen. After deep-mixing events, the upper layer restratified and nitrate concentrations decreased while Chl a and POC concentrations increased, suggesting that spring mixing events promote primary productivity through the temporary alleviation of nutrient and light limitation. At the end of March, POC accumulation rates and nitrate decrease rates within the euphotic zone (0–70 m) were the largest of the four events observed, ranging from +84 to +210 mmol C m−2 d−1 and –28 to –49 mmol N m−2 d−1, respectively. The subsurface consumption rate of oxygen (i.e., the degradation rate of organic matter) after the fourth event (the end of March) was estimated to be –0.62 micromol O2 kg−1 d−1. At depths of 300–400 m (below the mixed layer), the POC concentrations increased slightly throughout the observation period. The POC flux at a depth of 300 m was estimated to be 1.1 mmol C m−2 d−1. Our float observation has made it possible to observed biogeochemical parameters, which previously could only be estimated by shipboard observation and experiments, in the field and in real time.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haijiao Liu ◽  
Yuyao Song ◽  
Xiaodong Zhang ◽  
Guicheng Zhang ◽  
Chao Wu ◽  
...  

To examine the spatial pattern and controlling factors of the primary productivity (PP) of phytoplankton in the eastern Indian Ocean (EIO), deck-incubation carbon fixation (a 14C tracer technique) and the related hydrographic properties were measured at 15 locations during the pre-summer monsoon season (February–April 2017). There are knowledge gaps in the field observations of PP in the EIO. The estimated daily carbon production rates integrated over the photic zone ranged from 113 to 817 mgC m–2 d–1, with a mean of 522 mgC m–2 d–1. The mixed-layer integrated primary production (MLD-PP) ranged from 29.0 to 303.7 mgC m–2 d–1 (mean: 177.2 mgC m–2 d–1). The contribution of MLD-PP to the photic zone-integrated PP (PZI-PP) varied between 19 and 51% (mean: 36%). Strong spatial variability in the carbon fixation rates was found in the study region. Specifically, the surface primary production rates were relatively higher in the Bay of Bengal domain affected by riverine flux and lower in the equatorial domain owing to the presence of intermonsoonal Wyrtki jets, which were characterized by a depression of thermocline and nitracline. The PZI-PP exhibited a linear (positive) relationship with nutrient values, but with no significance, indicating a partial control of macronutrients and a light limitation of carbon fixation. As evident from the vertical profiles, the primary production process mainly occurred above the nitracline depth and at high photosynthetic efficiency. Phytoplankton (>5 μm), including dinoflagellates, Trichodesmium, coccolithophores, and dissolved nutrients, are thought to have been correlated with primary production during the study period. The measured on-deck biological data of our study allow for a general understanding of the trends in PP in the survey area of the EIO and can be incorporated into global primary production models.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 632
Author(s):  
David Abrego ◽  
Emily J. Howells ◽  
Stephen D. A. Smith ◽  
Joshua S. Madin ◽  
Brigitte Sommer ◽  
...  

Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.


2021 ◽  
Author(s):  
◽  
Joseph Marlow

<p>Coral reefs are among the most diverse ecosystems on the planet, yet they are also sensitive to anthropogenic disturbances that can degrade these systems. On many degraded reefs, large increases in bioeroding sponge abundance have occurred. On healthy reefs these sponges contribute to species diversity and habitat complexity, however there is growing concern that their proliferation on degraded reefs could lead to a state of net-erosion. In the Southeast Asian Indo-Pacific, the ecology of bioeroding sponges in relation to coral degradation has been poorly studied compared to other coral reef regions. This thesis aims to increase our understanding of the ecology of these sponges in the Wakatobi region of Indonesia, and their likely trajectory if reefs continue to degrade in the region.  My first research chapter aimed to identify the common bioeroding sponge species of the Wakatobi. This was achieved through in-water surveys, and subsequent spicule and phylogenetic analysis. This resulted in the identification of eight commonly occurring Wakatobi bioeroding sponge species, two of which are described for the first time. The assemblage composition was distinctly different from the only other bioeroding sponge study in Indonesian waters (Calcinai et al. 2005), highlighting the need for more clionaid taxonomic information from the region.  Having identified the common bioeroding sponge species in the region, my second chapter assessed the major environmental drivers of the abundance and assemblage composition of these sponges. Abundance surveys were conducted at 11 reef sites characterised by different environmental conditions and states of reef health. Bioeroding sponges occupied 8.9% of suitable substrate, and differences in abundance and assemblage composition were primarily attributed to differences in the availability of dead substrate. However, abundance was lowest at a sedimented and turbid reef, despite abundant dead substrate availability. This indicates a limited resilience in some species to conditions associated with terrestrial run-off and that not all forms of reef degradation are beneficial for bioeroding sponges. The capacity to increase spatial occupation of degraded reefs is also dependent upon larval recruitment and my third chapter was a two year recruitment study using in situ experimental calcareous blocks. Recruitment occurred rapidly and consistently with bioeroding sponges recruiting to approximately 70% of experimental blocks and exhibiting a preference for settlement on uncolonised dead calcareous substrates. The importance of substrate settlement cues and extent of larval dispersal appeared to differ between species, indicative of different recruitment mechanisms. Any significant increase in the availability of exposed calcareous substrate (e.g. following a mass coral bleaching event) is therefore likely to result in widespread increases in bioeroding sponge recruitment.  Surveys conducted in my second research chapter revealed that two of the three locally abundant zooxanthellate bioeroding species were absent from a highly turbid reef, Sampela. My fourth research chapter investigated whether this was due to light limitation by examining the photoacclimatory capabilities of the Symbiodinium photosymbionts of Cliona aff. viridis n. sp. A. PAM chlorophyll fluorometry was employed in a 25 day shading experiment and Symbiodinium of C. aff. viridis n. sp. A demonstrated an ability to photoacclimate to extreme light reduction and recover quickly when conditions returned to normal. My results demonstrate that the absence of this species at Sampela is not due to light limitation but possibly due to other stressors associated with turbidity, e.g. suspended sediment.  My final chapter was an assessment of the environmental drivers of rates of bioerosion in Spheciospongia cf. vagabunda, a common species in the Wakatobi. Erosion rates were determined from changes in dry-weight of calcareous substrates with attached grafts of S. cf. vagabunda after a year deployment across seven reef sites. The average bioerosion rate was 12.0 kg m⁻² sponge tissue yr⁻¹ (± 0.87 SE), but differed between sites and was negatively correlated with settled sediment depth. Bioerosion by this species can play a significant part in the carbonate budget on reefs where it is abundant (up to 20% of available substrate on some reefs in the Wakatobi) but is likely reduced on highly sedimented reefs.  In summary, the Wakatobi bioeroding sponge assemblage is diverse and overall, both adult abundance and recruitment are primarily driven by the availability of dead calcareous substrates. Therefore, further coral mortality and a subsequent rise in the availability of dead substrate in the region is likely to result in increased abundance of bioeroding sponges. However, not all forms of reef degradation will benefit these sponges; turbid and sedimented reefs will likely constitute stressful habitats for some bioeroding sponge species and assemblages in these environments will be comprised of fewer more resilient species.</p>


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1222
Author(s):  
Wei Zou ◽  
Guangwei Zhu ◽  
Hai Xu ◽  
Mengyuan Zhu ◽  
Chaoxuan Guo ◽  
...  

Algal blooms are environmental challenges confronting lakes worldwide and are significantly influenced by chlorophyll a yields per unit phosphorus (Chla/TP), or nitrogen (Chla/TN). Here, the influence of inter-annual hydrometeorological variations on Chla/TP and Chla/TN were evaluated in eutrophic shallow Lake Taihu, China. Our results demonstrated significant increases (p < 0.001) in both Chla/TN and Chla/TP from 2005 to 2017, and increased Chla yields during the winter months were mainly correlated with higher water temperature and longer sunshine hours, which may cause severer blooms in winter and spring. In remaining months from 2005 to 2017, typical associations between atmospheric stilling (or water level elevation) and higher Chla yields were observed. The results also indicate that atmospheric stilling and water level elevation significantly (p < 0.001) decreased background turbidity and promoted buoyant cyanobacterial biomass, alleviating phytoplankton light limitation. Given the subtropical location, eutrophic status, and high background turbidity of Lake Taihu, light may be the critical limiting factor for summer phytoplankton growth; thus, improved light availability would promote Chla yields until self-shading caused further light limitations. If the mechanism is general, promoting the effect of atmospheric stilling on annual peak Chla in shallow lakes may be greatly underestimated, and our finding will affect future bloom mitigation efforts in such systems.


2021 ◽  
Author(s):  
◽  
Joseph Marlow

<p>Coral reefs are among the most diverse ecosystems on the planet, yet they are also sensitive to anthropogenic disturbances that can degrade these systems. On many degraded reefs, large increases in bioeroding sponge abundance have occurred. On healthy reefs these sponges contribute to species diversity and habitat complexity, however there is growing concern that their proliferation on degraded reefs could lead to a state of net-erosion. In the Southeast Asian Indo-Pacific, the ecology of bioeroding sponges in relation to coral degradation has been poorly studied compared to other coral reef regions. This thesis aims to increase our understanding of the ecology of these sponges in the Wakatobi region of Indonesia, and their likely trajectory if reefs continue to degrade in the region.  My first research chapter aimed to identify the common bioeroding sponge species of the Wakatobi. This was achieved through in-water surveys, and subsequent spicule and phylogenetic analysis. This resulted in the identification of eight commonly occurring Wakatobi bioeroding sponge species, two of which are described for the first time. The assemblage composition was distinctly different from the only other bioeroding sponge study in Indonesian waters (Calcinai et al. 2005), highlighting the need for more clionaid taxonomic information from the region.  Having identified the common bioeroding sponge species in the region, my second chapter assessed the major environmental drivers of the abundance and assemblage composition of these sponges. Abundance surveys were conducted at 11 reef sites characterised by different environmental conditions and states of reef health. Bioeroding sponges occupied 8.9% of suitable substrate, and differences in abundance and assemblage composition were primarily attributed to differences in the availability of dead substrate. However, abundance was lowest at a sedimented and turbid reef, despite abundant dead substrate availability. This indicates a limited resilience in some species to conditions associated with terrestrial run-off and that not all forms of reef degradation are beneficial for bioeroding sponges. The capacity to increase spatial occupation of degraded reefs is also dependent upon larval recruitment and my third chapter was a two year recruitment study using in situ experimental calcareous blocks. Recruitment occurred rapidly and consistently with bioeroding sponges recruiting to approximately 70% of experimental blocks and exhibiting a preference for settlement on uncolonised dead calcareous substrates. The importance of substrate settlement cues and extent of larval dispersal appeared to differ between species, indicative of different recruitment mechanisms. Any significant increase in the availability of exposed calcareous substrate (e.g. following a mass coral bleaching event) is therefore likely to result in widespread increases in bioeroding sponge recruitment.  Surveys conducted in my second research chapter revealed that two of the three locally abundant zooxanthellate bioeroding species were absent from a highly turbid reef, Sampela. My fourth research chapter investigated whether this was due to light limitation by examining the photoacclimatory capabilities of the Symbiodinium photosymbionts of Cliona aff. viridis n. sp. A. PAM chlorophyll fluorometry was employed in a 25 day shading experiment and Symbiodinium of C. aff. viridis n. sp. A demonstrated an ability to photoacclimate to extreme light reduction and recover quickly when conditions returned to normal. My results demonstrate that the absence of this species at Sampela is not due to light limitation but possibly due to other stressors associated with turbidity, e.g. suspended sediment.  My final chapter was an assessment of the environmental drivers of rates of bioerosion in Spheciospongia cf. vagabunda, a common species in the Wakatobi. Erosion rates were determined from changes in dry-weight of calcareous substrates with attached grafts of S. cf. vagabunda after a year deployment across seven reef sites. The average bioerosion rate was 12.0 kg m⁻² sponge tissue yr⁻¹ (± 0.87 SE), but differed between sites and was negatively correlated with settled sediment depth. Bioerosion by this species can play a significant part in the carbonate budget on reefs where it is abundant (up to 20% of available substrate on some reefs in the Wakatobi) but is likely reduced on highly sedimented reefs.  In summary, the Wakatobi bioeroding sponge assemblage is diverse and overall, both adult abundance and recruitment are primarily driven by the availability of dead calcareous substrates. Therefore, further coral mortality and a subsequent rise in the availability of dead substrate in the region is likely to result in increased abundance of bioeroding sponges. However, not all forms of reef degradation will benefit these sponges; turbid and sedimented reefs will likely constitute stressful habitats for some bioeroding sponge species and assemblages in these environments will be comprised of fewer more resilient species.</p>


2021 ◽  
Vol 9 (11) ◽  
pp. 1301
Author(s):  
Lu Xia ◽  
Hao Liu ◽  
Lei Lin ◽  
Yueqi Wang

Chlorophyll fronts are important to monitor and map the oceanic front, especially in the season when sea surface temperature (SST) fronts weaken. In this study, surface chlorophyll-a (chl-a) fronts in the Yellow and Bohai seas were characterized for the first time using satellite data. Five distinct chl-a fronts (i.e., the Bohai Strait, Shandong Peninsula, Jiangsu, Liaodong Peninsula, and Korean Peninsula fronts) were observed in summer along the 40 m isobaths and faded in other seasons. Notably, these fronts coincided with SST fronts. Strong chl-a fronts emerged during summer due to chl-a blooms in eutrophic coastal waters paired with surface chl-a fading in strongly stratified offshore waters and coastal physical fronts. Although SST fronts were strong during winter, light limitation and strong vertical mixing in offshore waters led to low chl-a in both coastal and offshore waters, suppressing chl-a front formation. Both chl-a and SST fronts coincided with steep seabed slopes (slope ratio > 1), suggesting that seabed slope may be an indicator of oceanic front location.


2021 ◽  
Author(s):  
Mogens Flindt ◽  
Nele Oncken ◽  
Kadri Kuusemae ◽  
Troels Lange ◽  
Nicolaj Aaskoven ◽  
...  

Decades of eutrophication have increased water turbidity in Danish estuaries and led to light limitation of eelgrass (Zostera marina) growth. Former eelgrass areas are now denuded and consist of organic-rich muddy sediment with frequent resuspension events that maintain a high turbidity state. In addition, low anchoring capacity of eelgrass in the soft organic-rich sediments has contributed to eelgrass loss. When navigation channels in Danish estuaries are dredged, large amounts (~100.000 m3) of sandy sediment are shipped to remote dumping sites. Instead, we suggest that the dredged sand is used to consolidate adjacent muddy areas. We demonstrate in the present study that capping of fluid muddy sediment with 10 cm of sand is feasible without any vertical mixing and that this marine restoration approach can significantly lower the magnitude and frequency of resuspension events. Erosion of suspended solids change from 5 g m-2 min-1 in muddy areas to about 0.2 g m-2 min-1 in sand-capped areas, implying that sand-capping can significantly improve light conditions. Moreover, erosion thresholds increase from about 10-12 cm s-1 for mud to 40 cm s-1 for sand-capped mud. In conclusion, improved benthic light and increased anchoring capacity by sand-capping, a marine restoration practice, has the potential to facilitate restoration of otherwise lost eelgrass habitats.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1353
Author(s):  
Marco A. Molina-Montenegro ◽  
Cristian Atala ◽  
Fernando Carrasco-Urra

Solar eclipses represent a natural and unexpected event for plants that can potentially affect photosynthetic performance at the individual level. This effect, however, has seldom been evaluated. Here, we measured the impact of a total solar eclipse on the photosynthetic rate of different tree species—located in the Bosque Fray Jorge National Park, Chile—with varying degrees of shade tolerance. Specifically, we assessed whether the rapid and progressive light limitation facilitated by a solar eclipse would negatively impact the photosynthetic responses of these tree species and whether their photosynthetic performance would have a greater decrease when the percentage of eclipse shadow was higher, particularly in the less shade-tolerant species. To accomplish this, we compared daily changes in the photosynthetic rates of three tree species during a control (non-eclipse) vs. an eclipse day that occurred on 2 July 2019. Overall, tree species showed differences between a non-eclipse and eclipse day in the daily dynamics of their photosynthetic performance, with this trend being most evident at the peak of the solar eclipse. Additionally, each species showed a different pattern of de-epoxidation in accordance with its degree of shade tolerance. Our results suggest that solar eclipses negatively affect the photosynthesis of the studied Chilean tree species, which may be related to energy dissipation capacity via the de-epoxidation of xanthophyll pigments. This effect was more evident in shade-intolerant species, indicating that eclipses can present different consequences for the overall performance of various plant species.


Sign in / Sign up

Export Citation Format

Share Document