Biological production in the Indian Ocean upwelling zones - Part 2: Data based estimates of variable compensation depth for ocean carbon models via cyclo-stationary Bayesian Inversion.

Author(s):  
Mohanan Geethalekshmi Sreeush ◽  
Vinu Valsala ◽  
Halder Santanu ◽  
Sreenivas Pentakota ◽  
K.V.S.R. Prasad ◽  
...  
2017 ◽  
Author(s):  
Mohanan Geethalekshmi Sreeush ◽  
Vinu Valsala ◽  
Sreenivas Pentakota ◽  
Koneru Venkata Siva Rama Prasad ◽  
Raghu Murtugudde

Abstract. Biological modeling approach adopted by the Ocean Carbon Cycle Model Inter-comparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterization of compensation depth. Utilizing the principle of minimum solar radiation for the production and its attenuation by the surface Chl-a, we have proposed a new parameterization for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterization is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to an accurate seasonality in carbon cycle. The export production strengthens by ~ 70 % over western Arabian sea during monsoon period and achieved a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in model export and new production for a better representation of the seasonality of carbon cycle over upwelling regions The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.


2018 ◽  
Vol 15 (7) ◽  
pp. 1895-1918 ◽  
Author(s):  
Mohanan Geethalekshmi Sreeush ◽  
Vinu Valsala ◽  
Sreenivas Pentakota ◽  
Koneru Venkata Siva Rama Prasad ◽  
Raghu Murtugudde

Abstract. Biological modelling approach adopted by the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-II) provided amazingly simple but surprisingly accurate rendition of the annual mean carbon cycle for the global ocean. Nonetheless, OCMIP models are known to have seasonal biases which are typically attributed to their bulk parameterisation of compensation depth. Utilising the criteria of surface Chl a-based attenuation of solar radiation and the minimum solar radiation required for production, we have proposed a new parameterisation for a spatially and temporally varying compensation depth which captures the seasonality in the production zone reasonably well. This new parameterisation is shown to improve the seasonality of CO2 fluxes, surface ocean pCO2, biological export and new production in the major upwelling zones of the Indian Ocean. The seasonally varying compensation depth enriches the nutrient concentration in the upper ocean yielding more faithful biological exports which in turn leads to accurate seasonality in the carbon cycle. The export production strengthens by ∼ 70 % over the western Arabian Sea during the monsoon period and achieves a good balance between export and new production in the model. This underscores the importance of having a seasonal balance in the model export and new productions for a better representation of the seasonality of the carbon cycle over upwelling regions. The study also implies that both the biological and solubility pumps play an important role in the Indian Ocean upwelling zones.


2006 ◽  
Vol 20 (3) ◽  
pp. n/a-n/a ◽  
Author(s):  
Nicholas R. Bates ◽  
A. Christine Pequignet ◽  
Christopher L. Sabine

2014 ◽  
Vol 10 (4) ◽  
pp. 3163-3221
Author(s):  
B. S. Slotnick ◽  
V. Lauretano ◽  
J. Backman ◽  
G. R. Dickens ◽  
A. Sluijs ◽  
...  

Abstract. Major variations in global carbon cycling occurred between 62 and 48 Ma. To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. With the potential for renewed scientific drilling in the Indian Ocean, we examine lithologic, nannofossil assemblage, carbon isotope, and carbonate content records for late Paleocene – early Eocene sediment recovered at three existing sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The sediment sections are not ideal, because they were recovered in single holes using rotary coring methods. Site 214 was very shallow during the late Paleocene, when it received significant amounts of neritic carbonate. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific. The prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) occurs at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) occurs at both Site 213 and Site 215. The Paleocene–Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and 215 drops to < 5% shortly after the first occurrence of Discoaster lodoensis and the early Eocene rise in δ13C (~ 52 Ma). This reflects a rapid shoaling of the calcite compensation depth (CCD), and likely a major decrease in the net flux of 13C-depleted carbon to the ocean. Our work further constrains knowledge of the early Paleogene CCD, but more importantly suggests that excellent early Paleogene carbonate accumulation records might be recovered from the central Indian Ocean with future scientific drilling.


2015 ◽  
Vol 11 (3) ◽  
pp. 473-493 ◽  
Author(s):  
B. S. Slotnick ◽  
V. Lauretano ◽  
J. Backman ◽  
G. R. Dickens ◽  
A. Sluijs ◽  
...  

Abstract. Major variations in global carbon cycling occurred between 62 and 48 Ma, and these very likely related to changes in the total carbon inventory of the ocean-atmosphere system. Based on carbon cycle theory, variations in the mass of the ocean carbon should be reflected in contemporaneous global ocean carbonate accumulation on the seafloor and, thereby, the depth of the calcite compensation depth (CCD). To better constrain the cause and magnitude of these changes, the community needs early Paleogene carbon isotope and carbonate accumulation records from widely separated deep-sea sediment sections, especially including the Indian Ocean. Several CCD reconstructions for this time interval have been generated using scientific drill sites in the Atlantic and Pacific oceans; however, corresponding information from the Indian Ocean has been extremely limited. To assess the depth of the CCD and the potential for renewed scientific drilling of Paleogene sequences in the Indian Ocean, we examine lithologic, nannofossil, carbon isotope, and carbonate content records for late Paleocene – early Eocene sediments recovered at three sites spanning Ninetyeast Ridge: Deep Sea Drilling Project (DSDP) Sites 213 (deep, east), 214 (shallow, central), and 215 (deep, west). The disturbed, discontinuous sediment sections are not ideal, because they were recovered in single holes using rotary coring methods, but remain the best Paleogene sediments available from the central Indian Ocean. The δ13C records at Sites 213 and 215 are similar to those generated at several locations in the Atlantic and Pacific, including the prominent high in δ13C across the Paleocene carbon isotope maximum (PCIM) at Site 215, and the prominent low in δ13C across the early Eocene Climatic Optimum (EECO) at both Site 213 and Site 215. The Paleocene-Eocene thermal maximum (PETM) and the K/X event are found at Site 213 but not at Site 215, presumably because of coring gaps. Carbonate content at both Sites 213 and 215 drops to <5% shortly after the first occurrence of Discoaster lodoensis and the early Eocene rise in δ13C (~52 Ma). This reflects a rapid shoaling of the CCD, and likely a major decrease in the net flux of 13C-depleted carbon to the ocean. Our results support ideas that major changes in net fluxes of organic carbon to and from the exogenic carbon cycle occurred during the early Paleogene. Moreover, we conclude that excellent early Paleogene carbonate accumulation records might be recovered from the central Indian Ocean with future scientific drilling.


2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Vinu Valsala ◽  
M. G. Sreeush ◽  
Kunal Chakraborty

Sign in / Sign up

Export Citation Format

Share Document