carbon cycle model
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 40)

H-INDEX

35
(FIVE YEARS 4)

2021 ◽  
Vol 6 (3) ◽  
pp. 149
Author(s):  
Alan Frendy Koropitan

<p class="Papertext"><strong>Modeling Carbonate System in the Java Sea</strong>. Besides the global fossil fuel burning activities, forest fires in Kalimantan could potentially increase atmospheric CO<sub>2</sub> concentrations, impacting air-sea CO<sub>2</sub> gas exchange in the Java Sea and changing the balance of the marine carbonate system. This study uses a marine carbonate model to examine the processes that control CO<sub>2</sub> flux in the Java Sea and their relationship to CO<sub>2</sub> increase in the atmosphere. OCMIP-2 (<em>Ocean Carbon-Cycle Model Intercomparison Model Project, Phase-2</em>) is performed in this marine carbonate model coupled with the marine ecosystem model. The model results show that the quantity of carbon air flux differs during February and October 2000. More considerable flux is produced during February 2000, where the wind speeds are higher than in October 2000. However, the wind speeds have less impact when the CO<sub>2</sub> level in the atmosphere rises significantly. Due to the influence of a relatively high surface temperature in the tropical Java sea, the Java Sea functions as a carbon source to the atmosphere in general. In this case, the role of the <em>solubility pump</em> is more significant than that of biological processes in carbon absorption. Moreover, increased CO<sub>2</sub> in the atmosphere could alter the partial pressure equilibrium. In the case of 2002 forest fires (atmospheric CO<sub>2</sub> = 460 ppm), the carbon source of the Java Sea was less than before forest fires and even became carbon sink when atmospheric CO<sub>2</sub> rose to 1135.2 ppm based on the highest SSP scenario in 2100. This modeling also reveals marine acidification issues and could rapidly assess the future changes in marine ecosystems due to CO<sub>2</sub> levels rising in the atmosphere.</p>


Author(s):  
Ning Zeng ◽  
Pengfei Han ◽  
Zhiqiang Liu ◽  
Di Liu ◽  
Tomohiro Oda ◽  
...  

Abstract The world-wide lockdown in response to the COVID-19 pandemic in year 2020 led to economic slowdown and large reduction in fossil fuel CO2 emissions, but it is unclear how much it would slow the increasing trend of atmospheric CO2 concentration, the main driver of climate change, and whether this impact can be observed in light of large biosphere and weather variabilities. We used a state-of-the-art atmospheric transport model to simulate CO2, driven by a new daily fossil fuel emissions dataset and hourly biospheric fluxes from a carbon cycle model forced with observed climate variability. Our results show 0.21 ppm decrease in atmospheric column CO2 anomaly in the Northern Hemisphere latitude band 0-45°N (NH45) in March 2020, and an average of 0.14 ppm for the period of February-April 2020, the largest in the last 10 years. A similar decrease was observed by the carbon satellite GOSAT. Using model sensitivity experiments, we further found that COVID and weather variability are the major contributors of this CO2 drawdown, and the biosphere gave a small positive anomaly. Measurements at marine boundary layer stations such as Hawaii exhibits 1-2 ppm anomalies, mostly due to weather and the biosphere. At city scale, on-road CO2 enhancement measured in Beijing shows reduction of 20-30 ppm, consistent with drastically reduced traffic during COVID lockdown. A stepwise drop of 20 ppm at the city-wide lockdown was observed in the city of Chengdu. The ability of our current carbon monitoring systems in detecting the small and short-lasting COVID signal on the background of fossil fuel CO2 accumulated over the last two centuries is encouraging. The COVID-19 pandemic is an unintended experiment. Its impact suggests that to keep atmospheric CO2 at a climate-safe level will require sustained effort of similar magnitude and improved accuracy and expanded spatiotemporal coverage of our monitoring systems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thea H. Heimdal ◽  
Yves Goddéris ◽  
Morgan T. Jones ◽  
Henrik H. Svensen

AbstractThe emplacement of the Karoo Large Igneous Province (LIP) occurred synchronously with the Toarcian crisis (ca. 183 Ma), which is characterized by major carbon cycle perturbations. A marked increase in the atmospheric concentration of CO2 (pCO2) attests to significant input of carbon, while negative carbon isotope excursions (CIEs) in marine and terrestrial records suggest the involvement of a 12C-enriched source. Here we explore the effects of pulsed carbon release from the Karoo LIP on atmospheric pCO2 and δ13C of marine sediments, using the GEOCLIM carbon cycle model. We show that a total of 20,500 Gt C replicates the Toarcian pCO2 and δ13C proxy data, and that thermogenic carbon (δ13C of −36 ‰) represents a plausible source for the observed negative CIEs. Importantly, an extremely isotopically depleted carbon source, such as methane clathrates, is not required in order to replicate the negative CIEs. Although exact values of individual degassing pulses represent estimates, we consider our emission scenario realistic as it incorporates the available geological knowledge of the Karoo LIP and a representative framework for Earth system processes during the Toarcian.


2021 ◽  
Vol 17 (5) ◽  
pp. 2273-2289
Author(s):  
Sarah Shackleton ◽  
James A. Menking ◽  
Edward Brook ◽  
Christo Buizert ◽  
Michael N. Dyonisius ◽  
...  

Abstract. Deglaciations are characterized by relatively fast and near-synchronous changes in ice sheet volume, ocean temperature, and atmospheric greenhouse gas concentrations, but glacial inception occurs more gradually. Understanding the evolution of ice sheet, ocean, and atmosphere conditions from interglacial to glacial maximum provides insight into the interplay of these components of the climate system. Using noble gas measurements in ancient ice samples, we reconstruct mean ocean temperature (MOT) from 74 to 59.7 ka, covering the Marine Isotope Stage (MIS) 5a–4 boundary, MIS 4, and part of the MIS 4–3 transition. Comparing this MOT reconstruction to previously published MOT reconstructions from the last and penultimate deglaciation, we find that the majority of the last interglacial–glacial ocean cooling must have occurred within MIS 5. MOT reached equally cold conditions in MIS 4 as in MIS 2 (−2.7 ± 0.3 ∘C relative to the Holocene, −0.1 ± 0.3 ∘C relative to MIS 2). Using a carbon cycle model to quantify the CO2 solubility pump, we show that ocean cooling can explain most of the CO2 drawdown (32 ± 4 of 40 ppm) across MIS 5. Comparing MOT to contemporaneous records of benthic δ18O, we find that ocean cooling can also explain the majority of the δ18O increase across MIS 5 (0.7 ‰ of 1.3 ‰). The timing of ocean warming and cooling in the record and the comparison to coeval Antarctic isotope data suggest an intimate link between ocean heat content, Southern Hemisphere high-latitude climate, and ocean circulation on orbital and millennial timescales.


2021 ◽  
Vol 118 (40) ◽  
pp. e2103511118
Author(s):  
Mojtaba Fakhraee ◽  
Lidya G. Tarhan ◽  
Noah J. Planavsky ◽  
Christopher T. Reinhard

Marine dissolved organic carbon (DOC), the largest pool of reduced carbon in the oceans, plays an important role in the global carbon cycle and contributes to the regulation of atmospheric oxygen and carbon dioxide abundances. Despite its importance in global biogeochemical cycles, the long-term history of the marine DOC reservoir is poorly constrained. Nonetheless, significant changes to the size of the oceanic DOC reservoir through Earth’s history have been commonly invoked to explain changes to ocean chemistry, carbon cycling, and marine ecology. Here, we present a revised view of the evolution of marine DOC concentrations using a mechanistic carbon cycle model that can reproduce DOC concentrations in both oxic and anoxic modern environments. We use this model to demonstrate that the overall size of the marine DOC reservoir has likely undergone very little variation through Earth’s history, despite major changes in the redox state of the ocean–atmosphere system and the nature and efficiency of the biological carbon pump. A relatively static marine DOC reservoir across Earth’s history renders it unlikely that major changes in marine DOC concentrations have been responsible for driving massive repartitioning of surface carbon or the large carbon isotope excursions observed in Earth’s stratigraphic record and casts doubt on previously hypothesized links between marine DOC levels and the emergence and radiation of early animals.


Author(s):  
Xin Li ◽  
Hanqing Ma ◽  
Youhua Ran ◽  
Xufeng Wang ◽  
Gaofeng Zhu ◽  
...  

2021 ◽  
Vol 7 (33) ◽  
pp. eabg6864
Author(s):  
Constantin W. Arnscheidt ◽  
Daniel H. Rothman

The history of Earth’s climate and carbon cycle is preserved in deep-sea foraminiferal carbon and oxygen isotope records. Here, we show that the sub-million-year fluctuations in both records have exhibited negatively skewed non-Gaussian tails throughout much of the Cenozoic era (66 Ma to present), suggesting an intrinsic asymmetry that favors “hyperthermal-like” extreme events of abrupt global warming and oxidation of organic carbon. We show that this asymmetry is quantitatively consistent with a general mechanism of self-amplification that can be modeled using stochastic multiplicative noise. A numerical climate–carbon cycle model in which the amplitude of random biogeochemical fluctuations increases at higher temperatures reproduces the data well and can further explain the apparent pacing of past extreme warming events by changes in orbital parameters. Our results also suggest that, as anthropogenic warming continues, Earth’s climate may become more susceptible to extreme warming events on time scales of tens of thousands of years.


2021 ◽  
Vol 3 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission scenarios for the 21st century, we find almost perfect linear relationship between maximum global surface air temperature and cumulative carbon emissions, allowing unambiguous estimates of RCB for each CMIP6 model. The range of these estimates over the model ensemble is a measure of the uncertainty in the RCB arising from the range in climate sensitivity over this ensemble, and it is suggested that observational constraints imposed on the transient climate response in the model ensemble can reduce uncertainty in RCB estimates.


2021 ◽  
Vol 3 ◽  
Author(s):  
Daniel J. Burt ◽  
Friederike Fröb ◽  
Tatiana Ilyina

Ocean Alkalinity Enhancement (OAE) simultaneously mitigates atmospheric concentrations of CO2 and ocean acidification; however, no previous studies have investigated the response of the non-linear marine carbonate system sensitivity to alkalinity enhancement on regional scales. We hypothesise that regional implementations of OAE can sequester more atmospheric CO2 than a global implementation. To address this, we investigate physical regimes and alkalinity sensitivity as drivers of the carbon-uptake potential response to global and different regional simulations of OAE. In this idealised ocean-only set-up, total alkalinity is enhanced at a rate of 0.25 Pmol a-1 in 75-year simulations using the Max Planck Institute Ocean Model coupled to the HAMburg Ocean Carbon Cycle model with pre-industrial atmospheric forcing. Alkalinity is enhanced globally and in eight regions: the Subpolar and Subtropical Atlantic and Pacific gyres, the Indian Ocean and the Southern Ocean. This study reveals that regional alkalinity enhancement has the capacity to exceed carbon uptake by global OAE. We find that 82–175 Pg more carbon is sequestered into the ocean when alkalinity is enhanced regionally and 156 PgC when enhanced globally, compared with the background-state. The Southern Ocean application is most efficient, sequestering 12% more carbon than the Global experiment despite OAE being applied across a surface area 40 times smaller. For the first time, we find that different carbon-uptake potentials are driven by the surface pattern of total alkalinity redistributed by physical regimes across areas of different carbon-uptake efficiencies. We also show that, while the marine carbonate system becomes less sensitive to alkalinity enhancement in all experiments globally, regional responses to enhanced alkalinity vary depending upon the background concentrations of dissolved inorganic carbon and total alkalinity. Furthermore, the Subpolar North Atlantic displays a previously unexpected alkalinity sensitivity increase in response to high total alkalinity concentrations.


2021 ◽  
Author(s):  
Martin Rypdal ◽  
Niklas Boers ◽  
Hege-Beate Fredriksen ◽  
Kai-Uwe Eiselt ◽  
Andreas Johansen ◽  
...  

Abstract A remaining carbon budget (RCB) estimates how much CO2 we can emit and still reach a specific temperature target. The RCB concept is attractive since it easily communicates to the public and policymakers, but RCBs are also subject to uncertainties. The expected warming levels for a given carbon budget has a wide uncertainty range, which increases with less ambitious targets, i.e., with higher CO2 emissions and temperatures. Leading causes of RCB uncertainty are the future non-CO2 emissions, Earth system feedbacks, and the spread in the climate sensitivity among climate models. The latter is investigated in this paper, using a simple carbon cycle model and emulators of the temperature responses of the Earth System Models in the Coupled Model Intercomparison Project Phase 6 (CMIP6) ensemble. Driving 41 CMIP6 emulators with 127 different emission scenarios for the 21st century, we find almost perfect linear relationship between maximum global surface air temperature and cumulative carbon emissions, allowing unambiguous estimates of RCB for each CMIP6 model. The range of these estimates over the model ensemble is a measure of the uncertainty in the RCB arising from the range in climate sensitivity over this ensemble, and it is suggested that observational constraints imposed on the transient climate response in the model ensemble can reduce uncertainty in RCB estimates.


Sign in / Sign up

Export Citation Format

Share Document