Climate of the Past Discussions
Latest Publications


TOTAL DOCUMENTS

1075
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

Published By Copernicus Gmbh

1814-9359

2017 ◽  
pp. 1-36
Author(s):  
Mari F. Jensen ◽  
Aleksi Nummelin ◽  
Søren B. Nielsen ◽  
Henrik Sadatzki ◽  
Evangeline Sessford ◽  
...  

Here we establish a spatio-temporal evolution of the sea-surface temperatures in the North Atlantic over Dansgaard Oeschger (DO) events 5–8 (c. 30–40 ka) using the proxy surrogate reconstruction method. Proxy data suggest a large variability in North Atlantic sea-surface temperatures during the DO-events of the last glacial period. However, proxy data availability is limited and cannot provide a full spatial picture of the oceanic changes. Therefore, we combine fully coupled, general circulation model simulations with planktic foraminifera based sea-surface temperature reconstructions to obtain a broader spatial picture of the ocean state during DO-events 5–8. The resulting spatial sea-surface temperature patterns agree over a number of different general circulation models and simulations. We find that sea-surface temperature variability over the DO-events is characterized by colder conditions in the subpolar North Atlantic during stadials than during interstadials, and the variability is linked to changes in the Atlantic Meridional Overturning circulation, and in the sea-ice cover. Forced simulations are needed to capture the strength of the temperature variability and to reconstruct the variability in other climatic records not directly linked to the sea-surface temperature reconstructions. Our results are robust to uncertainties in the age models of the proxy data, the number of available temperature reconstructions, and over a range of climate models.


2015 ◽  
Vol 11 (6) ◽  
pp. 5755-5798 ◽  
Author(s):  
S. Panitz ◽  
U. Salzmann ◽  
B. Risebrobakken ◽  
S. De Schepper ◽  
M. J. Pound

Abstract. Little is known about the terrestrial response of high latitude Scandinavian vegetation to the warmer-than-present climate of the Late Pliocene (Piacenzian, 3.60–2.58 Ma). In order to assess Piacenzian terrestrial climate variability we present the first high resolution reconstruction of vegetation and climate change in northern Norway between 3.6–3.14 Ma. The reconstructions are derived from pollen assemblages in the marine sediments of ODP Hole 642B, Norwegian Sea (67° N). The palynological assemblages provide a unique record of latitudinal and altitudinal shifting of the forest boundaries, with vegetation alternating between cool temperate forest during warmer-than-present intervals, and boreal forest similar to today during cooler intervals. The northern boundary of the nemoral to boreonemoral forest zone was displaced at least 4–8° further north and warmest month temperatures were 6–14.5 °C higher than present during warm phases. Warm climatic conditions persisted during the earliest Piacenzian (ca. 3.6–3.47 Ma) with diverse cool temperate nemoral to boreonemoral forests growing in the lowlands of the Scandinavian mountains. A distinct cooling event at ca. 3.47 Ma resulted in a southward shift of vegetation boundaries, leading to the predominance of boreal forest and the development of open, low alpine environments. The cooling culminated around 3.3 Ma, coinciding with Marine Oxygen Isotope Stage (MIS) M2. Warmer climate conditions returned after ca. 3.29 Ma with higher climate variability indicated by the repeated expansion of forests and peat lands during warmer and cooler periods, respectively. Climate progressively cooled after 3.18 Ma, resembling climatic conditions during MIS M2. A high variability of Norwegian vegetation and climate changes during the Piacenzian is superimposed on a long-term cooling trend. This cooling was accompanied by an expansion of Sphagnum peat lands that potentially contributed to the decline in atmospheric CO2-concentrations at the end of the Piacenzian warm period and facilitated ice growth through positive vegetation-snow albedo feedbacks. Correlations with other Northern Hemisphere vegetation records suggest hemisphere-wide effects of climate cooling.


2015 ◽  
Vol 11 (6) ◽  
pp. 5727-5754 ◽  
Author(s):  
G. W. Grimm ◽  
A. J. Potts

Abstract. The Coexistence Approach has been used infer palaeoclimates for many Eurasian fossil plant assemblage. However, the theory that underpins the method has never been examined in detail. Here we discuss acknowledged and implicit assumptions, and assess the statistical nature and pseudo-logic of the method. We also compare the Coexistence Approach theory with the active field of species distribution modelling. We argue that the assumptions will inevitably be violated to some degree and that the method has no means to identify and quantify these violations. The lack of a statistical framework makes the method highly vulnerable to the vagaries of statistical outliers and exotic elements. In addition, we find numerous logical inconsistencies, such as how climate shifts are quantified (the use of a "center value" of a coexistence interval) and the ability to reconstruct "extinct" climates from modern plant distributions. Given the problems that have surfaced in species distribution modelling, accurate and precise quantitative reconstructions of palaeoclimates (or even climate shifts) using the nearest-living-relative principle and rectilinear niches (the basis of the method) will not be possible. The Coexistence Approach can be summarised as an exercise that shoe-horns a plant fossil assemblages into coexistence and then naively assumes that this must be the climate. Given the theoretical issues, and methodological issues highlighted elsewhere, we suggest that the method be discontinued and that all past reconstructions be disregarded and revisited using less fallacious methods.


2015 ◽  
Vol 11 (6) ◽  
pp. 5683-5725 ◽  
Author(s):  
D. J. Lunt ◽  
A. Farnsworth ◽  
C. Loptson ◽  
G. L. Foster ◽  
P. Markwick ◽  
...  

Abstract. During the period from approximately 150 to 35 million years ago, the Cretaceous–Paleocene–Eocene (CPE), the Earth was in a "greenhouse" state with little or no ice at either pole. It was also a period of considerable global change, from the warmest periods of the mid Cretaceous, to the threshold of icehouse conditions at the end of the Eocene. However, the relative contribution of palaeogeographic change, solar change, and carbon cycle change to these climatic variations is unknown. Here, making use of recent advances in computing power, and a set of unique palaeogeographic maps, we carry out an ensemble of 19 General Circulation Model simulations covering this period, one simulation per stratigraphic stage. By maintaining atmospheric CO2 concentration constant across the simulations, we are able to identify the contribution from palaeogeographic and solar forcing to global change across the CPE, and explore the underlying mechanisms. We find that global mean surface temperature is remarkably constant across the simulations, resulting from a cancellation of opposing trends from solar and paleogeographic change. However, there are significant modelled variations on a regional scale. The stratigraphic stage–stage transitions which exhibit greatest climatic change are associated with transitions in the mode of ocean circulation, themselves often associated with changes in ocean gateways, and amplified by feedbacks related to emissivity and albedo. Our results also have implications for the interpretation of single-site palaeo proxy records. In particular, our results allow the non-CO2 (i.e. palaeogeographic and solar constant) components of proxy records to be removed, leaving a more global component associated with carbon cycle change. This "adjustment factor" is illustrated for 7 key sites in the CPE, and applied to proxy data from Falkland Plateau, and we provide data so that similar adjustments can be made to any site and for any time period within the CPE.


2015 ◽  
Vol 11 (6) ◽  
pp. 5651-5681 ◽  
Author(s):  
M. Rojas ◽  
P. A. Arias ◽  
V. Flores-Aqueveque ◽  
A. Seth ◽  
M. Vuille

Abstract. In this paper we assess South American Monsoon System (SAMS) variability throughout the Last Millennium as depicted by the Coupled Modelling Intercomparison Project version 5/Paleo Modelling Intercomparison Project version 3 (CMIP5/PMIP3) simulations. High-resolution proxy records for the South American monsoon over this period show a coherent regional picture of a weak monsoon during the Medieval Climate Anomaly period and a stronger monsoon during the Little Ice Age (LIA). Due to the small forcing during the past 1000 years, CMIP5/PMIP3 model simulations do not show very strong temperature anomalies over these two specific periods, which in turn do not translate into clear precipitation anomalies, as suggested by rainfall reconstructions in South America. However, with an ad-hoc definition of these two periods for each model simulation, several coherent large-scale atmospheric circulation anomalies were identified. The models feature a stronger Monsoon during the LIA associated with: (i) an enhancement of the rising motion in the SAMS domain in austral summer, (ii) a stronger monsoon-related upper-troposphere anticyclone, (iii) activation of the South American dipole, which results to a certain extent in a poleward shift in the South Atlantic Convergence Zone and (iv) a weaker upper-level sub tropical jet over South America, this providing important insights into the mechanisms of these climate anomalies over South America during the past millennium.


2015 ◽  
Vol 11 (6) ◽  
pp. 5605-5649 ◽  
Author(s):  
T. Münch ◽  
S. Kipfstuhl ◽  
J. Freitag ◽  
H. Meyer ◽  
T. Laepple

Abstract. In low-accumulation regions, the reliability of δ18O-derived temperature signals from ice cores within the Holocene is unclear, primarily due to small Holocene climate changes relative to the intrinsic noise of the isotopic signal. In order to learn about the representativity of single ice cores and to optimise future ice-core-based climate reconstructions, we studied the stable-water isotope composition of firn at Kohnen station, Dronning Maud Land, Antarctica. Analysing δ18O in two 50 m long snow trenches allowed us to create an unprecedented, two-dimensional image characterising the isotopic variations from the centimetre to the hundred-metre scale. Our results show a clear seasonal layering of the isotopic composition, consistent with the accumulation rate, as well as high lateral isotopic variability caused by local stratigraphic noise. Based on the horizontal and vertical structure of the isotopic variations, we derive a statistical model for the stratigraphic noise. Our model successfully explains the trench data and allows to determine an upper bound of the reliability of climate reconstructions from seasonal to inter-annual time scales, depending on the number and the spacing of the cores taken. Implications for our study region include that reliably detecting a warming trend (0.1 °C decade−1) in 50 years of data would require ∼10–50 replicate cores with a horizontal spacing of at least 10 m. More generally, our results suggest that in order to obtain high-resolution records of Holocene temperature change, fast measurements, thus allowing multiple cores, are more important than to minimise analytic uncertainty as the latter only plays a minor role in the total uncertainty.


2015 ◽  
Vol 11 (6) ◽  
pp. 5549-5604
Author(s):  
L. M. K. Henke ◽  
F. H. Lambert ◽  
D. J. Charman

Abstract. The El Niño-Southern Oscillation (ENSO), an ocean–atmosphere coupled oscillation over the equatorial Pacific, is the most important source of global climate variability on inter-annual time scales. It has substantial environmental and socio-economic consequences such as devastation of South American fish populations and increased forest fires in Indonesia. The instrumental ENSO record is too short for analysing long-term trends and variability, hence proxy data is used to extend the record. However, different proxy sources have produced varying reconstructions of ENSO, with some evidence for a temperature–precipitation divergence in ENSO trends over the past millennium, in particular during the Mediaeval Climate Anomaly (MCA; AD 800–1300) and the Little Ice Age (LIA; AD 1400–1850). This throws into question the stability of the modern ENSO system and its links to the global climate, which has implications for future projections. Here we use a new statistical approach using EOF-based weighting to create two new large-scale ENSO reconstructions derived independently from precipitation proxies and temperature proxies respectively. The method is developed and validated using pseudoproxy experiments that address the effects of proxy dating error, resolution and noise to improve uncertainty estimations. The precipitation ENSO reconstruction displays a significantly more El Niño-like state during the LIA than the MCA, while the temperature reconstruction shows no significant difference. The trends shown in the precipitation ENSO reconstruction are relatively robust to variations in the precipitation EOF pattern. However, the temperature reconstruction suffers significantly from a lack of high-quality, favourably located proxy records, which limits its ability to capture the large-scale ENSO signal. Further expansion of the palaeo-database and improvements to instrumental, satellite and model representations of ENSO are needed to fully resolve the discrepancies found among proxy records.


2015 ◽  
Vol 11 (6) ◽  
pp. 5509-5548 ◽  
Author(s):  
O. Eicher ◽  
M. Baumgartner ◽  
A. Schilt ◽  
J. Schmitt ◽  
J. Schwander ◽  
...  

Abstract. Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3–5 % (3–4.2 mL kg−1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.


2015 ◽  
Vol 11 (6) ◽  
pp. 5439-5508 ◽  
Author(s):  
M. Cisneros ◽  
I. Cacho ◽  
J. Frigola ◽  
M. Canals ◽  
P. Masqué ◽  
...  

Abstract. This study analyses the evolution of sea surface conditions during the last 2700 years in the central-western Mediterranean Sea based on six records as measured on five short sediment cores from two sites north of Minorca (cores MINMC06 and HER-MC-MR3). Sea Surface Temperatures (SSTs) were obtained from alkenones and Globigerina bulloides-Mg/Ca ratios combined with δ18O measurements to reconstruct changes in the regional Evaporation–Precipitation (E–P) balance. We reviewed the G. bulloides Mg/Ca-SST calibration and re-adjusted it based on a set of core top measurements from the western Mediterranean Sea. According to the regional oceanographic data, the estimated Mg/Ca-SSTs are interpreted to reflect spring seasonal conditions mainly related to the April–May primary productivity bloom. In contrast, the Alkenone-SSTs signal likely integrates the averaged annual signal. A combination of chronological tools allowed synchronizing the records in a common age model. Subsequently a single anomaly stack record was constructed for each proxy, thus easing to identify the most significant and robust patterns. The warmest SSTs occurred during the Roman Period (RP), which was followed by a general cooling trend interrupted by several centennial-scale oscillations. This general cooling trend could be controlled by changes in the annual mean insolation. Whereas some particularly warm SST intervals took place during the Medieval Climate Anomaly (MCA) the Little Ice Age (LIA) was markedly unstable with some very cold SST events mostly during its second half. The records of the last centuries suggest that relatively low E–P ratios and cold SSTs dominated during negative North Atlantic Oscillation (NAO) phases, although SST records seem to present a close positive connection with the Atlantic Multidecadal Oscillation index (AMO).


2015 ◽  
Vol 11 (6) ◽  
pp. 5401-5438 ◽  
Author(s):  
T. Guillemot ◽  
V. Bichet ◽  
A. Simonneau ◽  
D. Rius ◽  
C. Massa ◽  
...  

Abstract. Due to its sensitivity to climate changes, south Greenland is a particularly suitable area to study past global climate changes and their influence on locale Human settlements. A paleohydrological investigation was therefore carried out on two river-fed lakes: Lake Qallimiut and Little Kangerluluup, both located close to the Labrador Sea in the historic farming center of Greenland. Two sediment cores (QAL-2011 and LKG-2011), spanning the last four millennia, were retrieved and showed similar thin laminae, described by high magnetic susceptibility and density, high titanium and TOC / TN atomic ratio, and coarse grain size. They are also characterized either by inverse grading followed by normal grading or by normal grading only and a prevalence of red amorphous particles and lignocellulosic fragments, typical of flood deposits. Flood events showed similar trend in both records: they mainly occurred during cooler and wetter periods characterized by weaker Greenlandic paleo-temperatures, substantial glacier advances, and a high precipitation on the Greenlandic Ice Sheet and North Atlantic ice-rafting events. They can therefore be interpreted as a result of ice and snow-melting episodes. They occurred especially during rapid climate changes (RCC) such as the Middle to Late Holocene transition around 2250 BC, the Sub-boreal/Sub-atlantic transition around 700 BC and the Little Ice Age (LIA) between AD 1300 and AD 1900, separated by cycles of 1500 years and driven by solar forcing. These global RCC revealed by QAL-2011 and LKG-2011 flood events may have influenced Human settlements in south Greenland, especially the paleo-Eskimo cultures and the Norse settlement, and have been mainly responsible for their demise.


Sign in / Sign up

Export Citation Format

Share Document