Climate of the Past
Latest Publications


TOTAL DOCUMENTS

1611
(FIVE YEARS 374)

H-INDEX

77
(FIVE YEARS 12)

Published By Copernicus Gmbh

1814-9332

2022 ◽  
Vol 18 (1) ◽  
pp. 23-44
Author(s):  
Irene Schimmelpfennig ◽  
Joerg M. Schaefer ◽  
Jennifer Lamp ◽  
Vincent Godard ◽  
Roseanne Schwartz ◽  
...  

Abstract. Mid-latitude mountain glaciers are sensitive to local summer temperature changes. Chronologies of past glacier fluctuations based on the investigation of glacial landforms therefore allow for a better understanding of natural climate variability at local scale, which is relevant for the assessment of the ongoing anthropogenic climate warming. In this study, we focus on the Holocene, the current interglacial of the last 11 700 years, which remains a matter of dispute regarding its temperature evolution and underlying driving mechanisms. In particular, the nature and significance of the transition from the early to mid-Holocene and of the Holocene Thermal Maximum (HTM) are still debated. Here, we apply an emerging approach by combining in situ cosmogenic 10Be moraine and 10Be–14C bedrock dating from the same site, the forefield of Steingletscher (European Alps), and reconstruct the glacier's millennial recession and advance periods. The results suggest that, subsequent to the final deglaciation at ∼10 ka, the glacier was similar to or smaller than its 2000 CE extent for ∼7 kyr. At ∼3 ka, Steingletscher advanced to an extent slightly outside the maximum Little Ice Age (LIA) position and until the 19th century experienced sizes that were mainly confined between the LIA and 2000 CE extents. These findings agree with existing Holocene glacier chronologies and proxy records of summer temperatures in the Alps, suggesting that glaciers throughout the region were similar to or even smaller than their 2000 CE extent for most of the early and mid-Holocene. Although glaciers in the Alps are currently far from equilibrium with the accelerating anthropogenic warming, thus hindering a simple comparison of summer temperatures associated with modern and paleo-glacier sizes, our findings imply that the summer temperatures during most of the Holocene, including the HTM, were similar to those at the end of the 20th century. Further investigations are necessary to refine the magnitude of warming and the potential HTM seasonality.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-21
Author(s):  
Lydie M. Dupont ◽  
Xueqin Zhao ◽  
Christopher Charles ◽  
John Tyler Faith ◽  
David Braun

Abstract. The Greater Cape Floristic Region (GCFR) of South Africa is a biodiversity hotspot of global significance, and its archeological record has substantially contributed to the understanding of modern human origins. For both reasons, the climate and vegetation history of southwestern South Africa is of interest to numerous fields. Currently known paleoenvironmental records cover the Holocene, the last glacial–interglacial transition and parts of the last glaciation but do not encompass a full glacial–interglacial cycle. To obtain a continuous vegetation record of the last Pleistocene glacial–interglacial cycles, we studied pollen, spores and micro-charcoal of deep-sea sediments from IODP Site U1479 retrieved from SW of Cape Town. We compare our palynological results of the Pleistocene with previously published results of Pliocene material from the same site. We find that the vegetation of the GCFR, in particular fynbos and afrotemperate forest, responds to precessional forcing of climate. The micro-charcoal record confirms the importance of fires in the fynbos vegetation. Ericaceae-rich and Asteraceae-rich types of fynbos could extend on the western part of the Paleo-Agulhas Plain (PAP), which emerged during periods of low sea level of the Pleistocene.


2021 ◽  
Vol 17 (6) ◽  
pp. 2653-2677
Author(s):  
Yoav Ben Dor ◽  
Francesco Marra ◽  
Moshe Armon ◽  
Yehouda Enzel ◽  
Achim Brauer ◽  
...  

Abstract. Annual and decadal-scale hydroclimatic variability describes key characteristics that are embedded into climate in situ and is of prime importance in subtropical regions. The study of hydroclimatic variability is therefore crucial to understand its manifestation and implications for climate derivatives such as hydrological phenomena and water availability. However, the study of this variability from modern records is limited due to their relatively short span, whereas model simulations relying on modern dynamics could misrepresent some of its aspects. Here we study annual to decadal hydroclimatic variability in the Levant using two sedimentary sections covering ∼ 700 years each, from the depocenter of the Dead Sea, which has been continuously recording environmental conditions since the Pleistocene. We focus on two series of annually deposited laminated intervals (i.e., varves) that represent two episodes of opposing mean climates, deposited during MIS2 lake-level rise and fall at ∼ 27 and 18 ka, respectively. These two series comprise alternations of authigenic aragonite that precipitated during summer and flood-borne detrital laminae deposited by winter floods. Within this record, aragonite laminae form a proxy of annual inflow and the extent of epilimnion dilution, whereas detrital laminae are comprised of sub-laminae deposited by individual flooding events. The two series depict distinct characteristics with increased mean and variance of annual inflow and flood frequency during “wetter”, with respect to the relatively “dryer”, conditions, reflected by opposite lake-level changes. In addition, decades of intense flood frequency (clusters) are identified, reflecting the in situ impact of shifting centennial-scale climate regimes, which are particularly pronounced during wetter conditions. The combined application of multiple time series analyses suggests that the studied episodes are characterized by weak and non-significant cyclical components of sub-decadal frequencies. The interpretation of these observations using modern synoptic-scale hydroclimatology suggests that Pleistocene climate changes resulted in shifts in the dominance of the key synoptic systems that govern rainfall, annual inflow and flood frequency in the eastern Mediterranean Sea over centennial timescales.


2021 ◽  
Vol 17 (6) ◽  
pp. 2633-2652
Author(s):  
Jack Longman ◽  
Daniel Veres ◽  
Aritina Haliuc ◽  
Walter Finsinger ◽  
Vasile Ersek ◽  
...  

Abstract. Peatlands are one of the largest terrestrial carbon sinks on the planet, yet little is known about the carbon accumulation rates (CARs) of mountainous peatlands. The long-term variability in the size of the associated carbon sink and its drivers remain largely unconstrained, especially when the long-term anthropogenic impact is also considered. Here, we present a composite CAR record of nine peatlands from central–eastern Europe (Romania and Serbia) detailing variability in the rates of carbon accumulation during the Holocene. We show examples of extremely high long-term rates of carbon accumulation (LORCA>120 gCm-2yr-1), indicating that mountain peatlands constitute an efficient regional carbon sink at times. By comparing our data to modelled palaeoclimatic indices and to measures of anthropogenic impact we disentangle the drivers of peat carbon accumulation in the area. Variability in early- and mid-Holocene CARs is linked to hydroclimatic controls, with high CARs occurring during the early Holocene and lower CARs associated with the transition to cooler and moister mid-Holocene conditions. By contrast, after 4000 years (calibrated) before present (years BP), the trends in CARs indicate a divergence from hydroclimate proxies, suggesting that other processes became the dominant drivers of peat CARs. We propose that enhanced erosion following tree cover reduction as well as increased rates of long-distance atmospheric dust fallout might have played a role, as both processes would result in enhanced mineral and nutrient supply to bog surfaces, stimulating peatland productivity. Surprisingly though, for the last 1000 years, reconstructed temperature is significantly correlated with CARs, with rising temperatures linked to higher CARs. Under future climate conditions, which are predicted to be warmer in the region, we predict that peat growth may expand but that this is entirely dependent upon the scale of human impact directly affecting the sensitive hydrological budget of these peatlands.


2021 ◽  
Vol 17 (6) ◽  
pp. 2607-2632
Author(s):  
Christopher Garrison ◽  
Christopher Kilburn ◽  
David Smart ◽  
Stephen Edwards

Abstract. One of the largest climate forcing eruptions of the nineteenth century was, until recently, believed to have taken place at the Babuyan Claro volcano, in the Philippines, in 1831. However, a recent investigation found no reliable evidence of such an eruption, suggesting that the 1831 eruption must have taken place elsewhere. We here present our newly compiled dataset of reported observations of a blue, purple and green sun in August 1831, which we use to reconstruct the transport of a stratospheric aerosol plume from that eruption. The source of the aerosol plume is identified as the eruption of Ferdinandea, which took place about 50 km off the south-west coast of Sicily (37.1∘ N, 12.7∘ E), in July and August 1831. The modest magnitude of this eruption, assigned a volcanic explosivity index (VEI) of 3, has commonly caused it to be discounted or overlooked when identifying the likely source of the stratospheric sulfate aerosol in 1831. It is proposed, however, that convective instability in the troposphere contributed to aerosol reaching the stratosphere and that the aerosol load was enhanced by addition of a sedimentary sulfur component to the volcanic plume. Thus, one of the largest climate forcing volcanic eruptions of the nineteenth century would effectively have been hiding in plain sight, arguably “lowering the bar” for the types of eruptions capable of having a substantial climate forcing impact. Prior estimates of the mass of stratospheric sulfate aerosol responsible for the 1831 Greenland ice core sulfate deposition peaks which have assumed a source eruption at a low-latitude site will, therefore, have been overstated. The example presented in this paper serves as a useful reminder that VEI values were not intended to be reliably correlated with eruption sulfur yields unless supplemented with compositional analyses. It also underlines that eye-witness accounts of historical geophysical events should not be neglected as a source of valuable scientific data.


2021 ◽  
Vol 17 (6) ◽  
pp. 2583-2605
Author(s):  
Sooin Yun ◽  
Jason E. Smerdon ◽  
Bo Li ◽  
Xianyang Zhang

Abstract. Spatiotemporal paleoclimate reconstructions that seek to estimate climate conditions over the last several millennia are derived from multiple climate proxy records (e.g., tree rings, ice cores, corals, and cave formations) that are heterogeneously distributed across land and marine environments. Assessing the skill of the methods used for these reconstructions is critical as a means of understanding the spatiotemporal uncertainties in the derived reconstruction products. Traditional statistical measures of skill have been applied in past applications, but they often lack formal null hypotheses that incorporate the spatiotemporal characteristics of the fields and allow for formal significance testing. More recent attempts have developed assessment metrics to evaluate the difference of the characteristics between two spatiotemporal fields. We apply these assessment metrics to results from synthetic reconstruction experiments based on multiple climate model simulations to assess the skill of four reconstruction methods. We further interpret the comparisons using analysis of empirical orthogonal functions (EOFs) that represent the noise-filtered climate field. We demonstrate that the underlying features of a targeted temperature field that can affect the performance of CFRs include the following: (i) the characteristics of the eigenvalue spectrum, namely the amount of variance captured in the leading EOFs; (ii) the temporal stability of the leading EOFs; (iii) the representation of the climate over the sampling network with respect to the global climate; and (iv) the strength of spatial covariance, i.e., the dominance of teleconnections, in the targeted temperature field. The features of climate models and reconstruction methods identified in this paper demonstrate more detailed assessments of reconstruction methods and point to important areas of testing and improving real-world reconstruction methods.


2021 ◽  
Vol 17 (6) ◽  
pp. 2559-2576
Author(s):  
Kim H. Stadelmaier ◽  
Patrick Ludwig ◽  
Pascal Bertran ◽  
Pierre Antoine ◽  
Xiaoxu Shi ◽  
...  

Abstract. During the Last Glacial Maximum (LGM), a very cold and dry period around 26.5–19 kyr BP, permafrost was widespread across Europe. In this work, we explore the possible benefit of using regional climate model data to improve the permafrost representation in France, decipher how the atmospheric circulation affects the permafrost boundaries in the models, and test the role of ground thermal contraction cracking in wedge development during the LGM. With these aims, criteria for possible thermal contraction cracking of the ground are applied to climate model data for the first time. Our results show that the permafrost extent and ground cracking regions deviate from proxy evidence when the simulated large-scale circulation in both global and regional climate models favours prevailing westerly winds. A colder and, with regard to proxy data, more realistic version of the LGM climate is achieved given more frequent easterly winds conditions. Given the appropriate forcing, an added value of the regional climate model simulation can be achieved in representing permafrost and ground thermal contraction cracking. Furthermore, the model data provide evidence that thermal contraction cracking occurred in Europe during the LGM in a wide latitudinal band south of the probable permafrost border, in agreement with field data analysis. This enables the reconsideration of the role of sand-wedge casts to identify past permafrost regions.


2021 ◽  
Vol 17 (6) ◽  
pp. 2537-2558
Author(s):  
Zixuan Han ◽  
Qiong Zhang ◽  
Qiang Li ◽  
Ran Feng ◽  
Alan M. Haywood ◽  
...  

Abstract. The mid-Pliocene (∼3 Ma) is one of the most recent warm periods with high CO2 concentrations in the atmosphere and resulting high temperatures, and it is often cited as an analog for near-term future climate change. Here, we apply a moisture budget analysis to investigate the response of the large-scale hydrological cycle at low latitudes within a 13-model ensemble from the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2). The results show that increased atmospheric moisture content within the mid-Pliocene ensemble (due to the thermodynamic effect) results in wetter conditions over the deep tropics, i.e., the Pacific intertropical convergence zone (ITCZ) and the Maritime Continent, and drier conditions over the subtropics. Note that the dynamic effect plays a more important role than the thermodynamic effect in regional precipitation minus evaporation (PmE) changes (i.e., northward ITCZ shift and wetter northern Indian Ocean). The thermodynamic effect is offset to some extent by a dynamic effect involving a northward shift of the Hadley circulation that dries the deep tropics and moistens the subtropics in the Northern Hemisphere (i.e., the subtropical Pacific). From the perspective of Earth's energy budget, the enhanced southward cross-equatorial atmospheric transport (0.22 PW), induced by the hemispheric asymmetries of the atmospheric energy, favors an approximately 1∘ northward shift of the ITCZ. The shift of the ITCZ reorganizes atmospheric circulation, favoring a northward shift of the Hadley circulation. In addition, the Walker circulation consistently shifts westward within PlioMIP2 models, leading to wetter conditions over the northern Indian Ocean. The PlioMIP2 ensemble highlights that an imbalance of interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate.


2021 ◽  
Vol 17 (6) ◽  
pp. 2515-2536
Author(s):  
Rebekah A. Stein ◽  
Nathan D. Sheldon ◽  
Sarah E. Allen ◽  
Michael E. Smith ◽  
Rebecca M. Dzombak ◽  
...  

Abstract. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar / 39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.


Sign in / Sign up

Export Citation Format

Share Document