Competition of Phragmites australis and Phalaris arundinacea in constructed wetlands with horizontal subsurface flow – does it affect BOD5, COD and TSS removal?

2014 ◽  
Vol 73 ◽  
pp. 53-57 ◽  
Author(s):  
T. Březinová ◽  
J. Vymazal
1997 ◽  
Vol 35 (5) ◽  
pp. 95-102 ◽  
Author(s):  
A. Drizo ◽  
C. A. Frost ◽  
K. A. Smith ◽  
J. Grace

The objective was to investigate the performance of constructed wetlands with horizontal subsurface flow, using shale as a substrate, in removal of phosphate (P) and ammonium (N) from sewage. Shale was selected on the basis of its physico-chemical properties and its potential for P removal, investigated in an earlier study. A laboratory-scale constructed wetland system (CWS) employing horizontal subsurface flow was set up in a greenhouse, with and without Phragmites australis (reeds), and its capacity for simultaneous phosphate and ammonium removal from a synthetic sewage was monitored over a period of ten months. Both the planted and unplanted systems showed an extremely high P removal of 98–100% over the whole period of investigation. Ammonium N was also completely removed in the planted tanks, whereas in the unplanted ones the rates of removal varied between 40 and 75%; removal of nitrate N varied between 85 and 95% in planted and between 45 and 75% in unplanted tanks. pH, Eh and temperature did not differ significantly among planted and unplanted tanks, but the inlet Eh was correlated with P removal (r2 = 0.73; p < 0.05). The presence of Phragmites australis contributed significantly (p < 0.05) to P and N removal. In addition the plants showed excellent growth (up to 2 m in the first year), with good root and rhizome development, and showed potential for heavy metal removal. It was concluded that the shale-based system (which uses a readily available material) shows promise as a substrate for constructed wetland systems.


2017 ◽  
Vol 76 (7) ◽  
pp. 1666-1675 ◽  
Author(s):  
Mateus Pimentel Matos ◽  
André Baxter Barreto ◽  
Gabriel Rodrigues Vasconcellos ◽  
Antonio Teixeira Matos ◽  
Gustavo Ferreira Simões ◽  
...  

Despite the fact that several authors consider the available measurement methods of hydraulic conductivity (ks) suitable for a good representation of the bed condition and clogging potential in horizontal subsurface flow constructed wetlands, others have questioned their adequacy. In this work, hydraulic conductivity measurements with conventional and modified methods were undertaken in two small full-scale units, one planted with cattail (Typha latifolia) and the other unplanted. Both units had already been operating for seven years and showed a high degree of clogging. It was observed that the use of the falling head method, with the introduction of the tubes during the test, provided results without a clear spatial trend. On the other hand, tests done on monitoring wells inserted during construction time showed, as expected, ks increasing with the horizontal distance from the inlet, but without reflecting actual field conditions. It was observed that, as the bed became more clogged, the use of the reported methods became more complex, suggesting the need of other methodologies. The use of planted fixed reactors (removable baskets installed in the bed) with evaluation of ks at constant head in the laboratory showed potential for the characterization of the hydrodynamic properties of the porous medium.


Sign in / Sign up

Export Citation Format

Share Document