scholarly journals Experiments and modeling on thermoelectric power generators used for waste heat recovery from hot water pipes

2019 ◽  
Vol 158 ◽  
pp. 1052-1058 ◽  
Author(s):  
Jizhe Wang ◽  
Shuang Liu ◽  
Liangliang Li
Author(s):  
Tong Xing ◽  
Qingfeng Song ◽  
Pengfei Qiu ◽  
Qihao Zhang ◽  
Ming Gu ◽  
...  

GeTe-based materials have a great potential to be used in thermoelectric generators for waste heat recovery due to their excellent thermoelectric performance, but their module research is greatly lagging behind...


Author(s):  
Robert G. Ryan ◽  
Tom Brown

A 1 MW Direct Fuel Cell® (DFC) power plant began operation at California State University, Northridge (CSUN) in January, 2007. This plant is currently the largest fuel cell plant in the world operating on a university campus. The plant consists of four 250 kW DFC300MA™ fuel cell units purchased from FuelCell Energy, Inc., and a waste heat recovery system which produces dual heating hot water loops for campus building ventilation heating, and domestic water and swimming pool heating water for the University Student Union (USU). The waste heat recovery system was designed by CSUN’s Physical Plant Management and engineering student staff personnel to accommodate the operating conditions required by the four individual fuel cell units as well as the thermal energy needs of the campus. A Barometric Thermal Trap (BaTT) was designed to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The BaTT is required to maintain an appropriate exhaust back pressure at the individual fuel cell units under a variety of operating conditions and without reliance on mechanical systems for control. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is used for heating water for the campus’ hot water system. The latent heat represents a significant amount of energy because of the high steam content in the fuel cell exhaust, although it is available at a lower temperature. CSUN’s design is able to make effective use of the latent heat because of the need for swimming pool heating and hot water for showers in an adjacent recreational facility at the USU. Design calculations indicate that a Combined Heat and Power efficiency of 74% is possible. This paper discusses the integration of the fuel cell plant into the campus’ energy systems, and presents preliminary operational data for the performance of the heat recovery system.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Seweryn Lipiński ◽  
Michał Duda ◽  
Dominik Górski

The analysis of advisability and profitability of using an air to water heat pump for the purpose of waste heat recovery from servers being used as cryptocurrency mining rigs, was performed. To carry out such an analysis, the cooling unit of the computing server was connected to the heat pump, and the entire system was adequately equipped with devices measuring parameters of the process. Performed experiments proves that the heat pump coefficient of performance (COP) reaches satisfactory values (i.e., an average of 4.21), what is the result of stable and high-temperature source of heat at the pump inlet (i.e., in the range of 29.9-34.1). Economic analysis shows a significant reduction in the cost of heating domestic hot water (by nearly 59-61%). The main conclusion which can be drawn from the paper, is that in a case of having a waste heat source in a form of a server or similar, it is advisable to consider the purchase of air-to-water heat pump for the purpose of domestic hot water heating.


Author(s):  
Robert Ryan

A 1 MW fuel cell power plant began operation at California State University, Northridge (CSUN) in January, 2007. The power plant was installed on campus to complement a Satellite Chiller Plant which is being constructed in response to increased cooling demands related to campus growth. The power plant consists of four 250 kW fuel cell units, and a waste heat recovery system which produces hot water for the campus. The waste heat recovery system was designed by CSUN’s Physical Plant Management personnel, in consultation with engineering faculty and students, to accommodate the operating conditions required by the fuel cell units as well as the thermal needs of the campus. A unique plenum system, known as a Barometric Thermal Trap, was created to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is being used to partially supply the campus’ building hot water and space heating requirements. The latent heat is intended for use by an adjacent recreational facility at the University Student Union. This paper discusses plant performance data which was collected and analyzed over a several month period during 2008. Electrical efficiencies and Combined Heat and Power (CHP) efficiencies are presented. The data shows that CHP efficiencies have been consistently over 60%, with the potential to exceed 70% when planned improvements to the plant are completed.


Sign in / Sign up

Export Citation Format

Share Document