power generators
Recently Published Documents


TOTAL DOCUMENTS

919
(FIVE YEARS 231)

H-INDEX

48
(FIVE YEARS 8)

2022 ◽  
Vol 51 ◽  
pp. 101955
Author(s):  
Da-hye Kim ◽  
Saerom Seo ◽  
Sijin Kim ◽  
Seungik Shin ◽  
Kwonsang Son ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Yiming Ma ◽  
Jian Dong ◽  
Xiran Zhou ◽  
Guanfeng Zhang ◽  
Haixin Wang ◽  
...  

With the increasing capacity of wind power generators (WTGs), the volatility of wind power could significantly challenge the stability and economy of electric and heating networks. To tackle this challenge, this paper proposes an optimal dispatch framework based on controllable load (including controllable electric load and controllable thermostatically load) to reduce wind power curtailment. A forecasting model is developed for the controllable load, which comprehensively considers autocorrelation, weather factor, and consumers’ behavior characteristics. With adjusting controllable load, an optimal dispatch model of power system is then established and resolved by Sequential Least Squares Programming (SLSQP) method. Our method is verified through numerous simulations. The results show that, compared with the state-of-the-art techniques of support vector machine and recurrent neural networks, the root mean square error with the proposed long short-term memory can be reduced by 0.069 and 0.044, respectively. Compared with conventional method, the peak wind power curtailment with dispatching controllable load is reduced by nearly 10% and 5% in two cases, respectively.


Author(s):  
Sangho Kim ◽  
Malkeshkumar Patel ◽  
Thanh Tai Nguyen ◽  
Naveen Kumar ◽  
Priyanka Bhatnagar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 6 (7) ◽  
pp. 133-139
Author(s):  
Md. Janibul Alam Soeb ◽  
Md. Shahid Iqbal ◽  
Md. Abu Naser Mojumder ◽  
Muhammad Rashed Al Mamun ◽  
A. S. M. Shahjalal Atik ◽  
...  

The demand for electrical power is rapidly increasing due to the rise of industries in developing countries. Power generation stations are having troubles to strike a balance between demand and generation. In this situation, it is urged that appropriate remedial action be taken. Rising power demand can be met by designing an efficient electric power generation system which will also help lowering the generation cost. It is shown that while high rated electric power generators are connected in parallel the value of neutral current is rising and the cooling temperature is also increased. Here, the goal of this experimental work is to present a new model for designing an efficient power production system for average-load (ranging up to 8000 Amp, 440 V) industries to minimize the demand on centralized interconnected grid. A scheme is proposed with four generators (2500 kVA, 2000 kVA, 2000 kVA and 1250 KVA) in parallel and enough cooling arrangement is provided with minimal cost. The coolant temperature is maintained 61 °C to 61.5 °C and at that time diesel temperature is not more than 38.5 °C. The amount of neutral-current is also optimized (up to 8.5 Amp.) which was more than 12 Amp. At the morning and afternoon, the neutral current is almost constant, but it is bit fluctuating between 7.5 Amp to 8.2 Amp at mid-day. The final outcome shows, the suggested system is efficiently stable with the change of load and generates optimal electricity.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tingjun Wu ◽  
Jiwon Kim ◽  
Jae-Hong Lim ◽  
Min-Seok Kim ◽  
Nosang V. Myung

Thermoelectric devices based power generation and cooling systemsystem have lot of advantages over conventional refrigerator and power generators, becausebecause of solid-state devicesdevices, compact size, good scalability, nono-emissions and low maintenance requirement with long operating lifetime. However, the applications of thermoelectric devices have been limited owingowing to their low energy conversion efficiency. It has drawn tremendous attention in the field of thermoelectric materials and devices in the 21st century because of the need of sustainable energy harvesting technology and the ability to develop higher performance thermoelectric materials through nanoscale science and defect engineering. Among various fabrication methods, electrodeposition is one of the most promising synthesis methods to fabricate devices because of its ability to control morphology, composition, crystallinity, and crystal structure of materials through controlling electrodeposition parameters. Additionally, it is an additive manufacturing technique with minimum waste materials that operates at near room temperature. Furthermore, its growth rate is significantly higher (i.e., a few hundred microns per hour) than the vacuum processes, which allows device fabrication in cost effective matter. In this paper, the latest development of various electrodeposited thermoelectric materials (i.e., Te, PbTe, Bi2Te3 and their derivatives, BiSe, BiS, Sb2Te3) in different forms including thin films, nanowires, and nanocomposites were comprehensively reviewed. Additionally, their thermoelectric properties are correlated to the composition, morphology, and crystal structure.


2021 ◽  
pp. 1-23
Author(s):  
Dandan Pang ◽  
Aibing Zhang ◽  
Zhenfei Wen ◽  
Baolin Wang ◽  
Ji Wang

Abstract Thermoelectric power generators (TEGs) have been attracted increasing attention recently due to their capability of converting waste heat into useful electric energy without hazardous emissions. This paper develops a theoretical model to analyze the thermoelectric performance of TEGs with cylindrical legs. The influence of heat convection loss between lateral surfaces of thermoelectric legs and ambient environment on the energy conversion efficiency is investigated. For the idealized model, closed-form solutions of optimal electric current, maximum power output and maximum energy conversion efficiency are obtained, a new dimensionless impact factor H is introduced to capture the heat convection effect. The impact factor H depends on the ratio of heat conductivity to heat convection coefficient and geometry size of thermoelectric legs, as well as the temperature ratio of heat sink to hot source. The performance can be evaluated by the figure of merit, impact factor H and temperature gradient across the hot source and heat sink for a well-designed TEG with cylindrical legs. For the case of considering contact resistance, it is found that there exists an optimal leg's height for maximum energy conversion efficiency due to the heat convection on lateral surfaces of thermoelectric leg. The proposed theoretical model in this paper will be very helpful in the designing of actual TEG devices.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8504
Author(s):  
Peter Osman ◽  
Jennifer A. Hayward ◽  
Irene Penesis ◽  
Philip Marsh ◽  
Mark A. Hemer ◽  
...  

The global tidal energy resource for electricity generation is small, and converting tidal kinetic energy to electricity is expensive compared to solar-photovoltaic or land-based wind turbine generators. However, as the renewable energy content in electricity supplies grows, the need to stabilise these supplies increases. This paper describes tidal energy’s potential to reduce intermittency and variability in electricity supplied from solar and wind power farms while lowering the capital expenditure needed to improve dispatchability. The paper provides a model and hypothetical case studies to demonstrate how sharing energy storage between tidal stream power generators and wind or solar power generators can mitigate the level, frequency, and duration of power loss from wind or solar PV farms. The improvements in dispatchability use tidal energy’s innate regularity and take account of tidal asymmetry and extended duration low-velocity neap tides. The case studies are based on a national assessment of Australian tidal energy resources carried out from 2018 to 2021.


2021 ◽  
pp. 0309524X2110605
Author(s):  
Mohamed Bendaoud

This paper presents an approach to design the sliding mode control for an AC-DC converter, consisting of a diode rectifier in series with a boost converter. The results obtained show that this converter with the proposed control law can be used to control the extraction of mechanical power when connecting the permanent magnet synchronous generator (PMSG) to a wind turbine. The boost converter operates in discontinuous conduction mode (DCM) in order to reduce the total harmonic distortion (THD) of the currents in the PMSG. To verify the performance of the proposed method, a simulation study is performed.


Sign in / Sign up

Export Citation Format

Share Document