thermoelectric generators
Recently Published Documents


TOTAL DOCUMENTS

1020
(FIVE YEARS 368)

H-INDEX

54
(FIVE YEARS 15)

2022 ◽  
Vol 49 ◽  
pp. 101649
Author(s):  
Amir Farhang Sotoodeh ◽  
Farzin Ahmadi ◽  
Zahra Ghaffarpour ◽  
Mohammad Ebadollahi ◽  
Hossein Nasrollahi ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 608
Author(s):  
Tomoki Ozawa ◽  
Masayuki Murata ◽  
Takashi Suemasu ◽  
Kaoru Toko

Flexible and reliable thermoelectric generators (TEGs) will be essential for future energy harvesting sensors. In this study, we synthesized p- and n-type SiGe layers on a high heat-resistant polyimide film using metal-induced layer exchange (LE) and demonstrated TEG operation. Despite the low process temperature (<500 °C), the polycrystalline SiGe layers showed high power factors of 560 µW m−1 K−2 for p-type Si0.4Ge0.6 and 390 µW m−1 K−2 for n-type Si0.85Ge0.15, owing to self-organized doping in LE. Furthermore, the power factors indicated stable behavior with changing measurement temperature, an advantage of SiGe as an inorganic material. An in-plane π-type TEG based on these SiGe layers showed an output power of 0.45 µW cm−2 at near room temperature for a 30 K temperature gradient. This achievement will enable the development of environmentally friendly and highly reliable flexible TEGs for operating micro-energy devices in the future Internet of Things.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Shinichi Hata ◽  
Misaki Shiraishi ◽  
Soichiro Yasuda ◽  
Gergely Juhasz ◽  
Yukou Du ◽  
...  

Since future energy harvesting technologies require stable supply and high-efficiency energy conversion, there is an increasing demand for high-performance organic thermoelectric generators (TEGs) based on waterproof thermoelectric materials. The poor stability of n-type organic semiconductors in air and water has proved a roadblock in the development of reliable thermoelectric power generators. We developed a simple green route for preparing n-type carbon nanotubes (CNTs) by doping with cationic surfactants and fabricated films of the doped CNTs using only aqueous media. The thermoelectric properties of the CNT films were investigated in detail. The nanotubes doped using a cationic surfactant (cetyltrimethylammonium chloride (CTAC)) retained an n-doped state for at least 28 days when exposed to water and air, indicating higher stability than that for contemporary CNT-based thermoelectric materials. The wrapping of the surfactant molecules around the CNTs is responsible for blocking oxygen and water from attacking the CNT walls, thus, extending the lifetime of the n-doped state of the CNTs. We also fabricated thermoelectric power conversion modules comprising CTAC-doped (n-type) and sodium dodecylbenzenesulfonate- (SDBS-) doped (p-type) CNTs and tested their stabilities in water. The modules retained 80±2.4% of their initial maximum output power (at a temperature difference of 75°C) after being submerged in water for 30 days, even without any sealing fills to prevent device degradation. The remarkable stability of our CNT-based modules can enable the development of reliable soft electronics for underwater applications.


Small ◽  
2022 ◽  
pp. 2106875
Author(s):  
Yijie Liu ◽  
Shuaihang Hou ◽  
Xiaodong Wang ◽  
Li Yin ◽  
Zuoxu Wu ◽  
...  

Author(s):  
Albert Tarancon ◽  
Vincenzo Esposito ◽  
Marc Torrell Faro ◽  
Marcel Di Vece ◽  
Jae Sung Son ◽  
...  

Abstract This roadmap aims to define the guidelines to maximise the impact of the 3D printing revolution on the next generation of devices for the energy transition. It also outlines the current status, challenges and required advances in Science and Technology for a series of power generation technologies (fuel cells, solar cells, thermoelectric generators and turbomachinery) and energy storage technologies (electrolysers, batteries and supercapacitors). Finally, the roadmap discusses the role of 3D printing in improving the mass and heat transfer to improve the energy efficiency of chemical reactors (CO2 conversion) and novel cooling systems. With this document, the authors intend to provide a valuable tool for researchers, technology developers, and policymakers when defining their strategies for the energy sector's future.


Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 121900
Author(s):  
Zhiying Song ◽  
Jie Ji ◽  
Zhaomeng Li

Sign in / Sign up

Export Citation Format

Share Document