scholarly journals Virtual synchronous generator: Modifications, stability assessment and future applications

2022 ◽  
Vol 8 ◽  
pp. 1704-1717
Author(s):  
Khalid Mehmood Cheema ◽  
Naveed Ishtiaq Chaudhary ◽  
Muhammad Faizan Tahir ◽  
Kashif Mehmood ◽  
Muhammad Mudassir ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5851
Author(s):  
Akito Nakadomari ◽  
Ryo Miyara ◽  
Talal Alharbi ◽  
Natarajan Prabaharan ◽  
Shriram Srinivasarangan Rangarajan ◽  
...  

Increasing the proportion of renewable energy generations in remote island power systems is becoming essential for realizing decarbonized society. However, since inverter-connected renewable energies have different generation characteristics from conventional generators, the massive penetration can adversely affect system stability. In particular, fault events in such weak remote systems can cause fast voltage collapse, and there is a need to assess dynamic voltage stability. This study attempts dynamic voltage stability assessment using the critical boundary index (CBI) and investigates the impact of the virtual synchronous generator (VSG) on dynamic voltage stability. A remote island power system and VSG are modeled, and time-domain simulations are conducted with case studies of fault events. The simulation results show the potential of CBI to use for dynamic voltage stability assessment. Furthermore, the VSG can provide suitable power output during fault events and improve dynamic voltage stability.


2017 ◽  
Vol 137 (6) ◽  
pp. 546-552 ◽  
Author(s):  
Yuko Hirase ◽  
Osamu Noro ◽  
Shogo Katsura ◽  
Kensho Abe ◽  
Eiji Yoshimura ◽  
...  

2020 ◽  
Vol 140 (6) ◽  
pp. 531-538
Author(s):  
Kotaro Nagaushi ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Atsushi Sakahara ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4581
Author(s):  
Yuko Hirase ◽  
Yuki Ohara ◽  
Naoya Matsuura ◽  
Takeaki Yamazaki

In the field of microgrids (MGs), steady-state power imbalances and frequency/voltage fluctuations in the transient state have been gaining prominence owing to the advancing distributed energy resources (DERs) connected to MGs via grid-connected inverters. Because a stable, safe power supply and demand must be maintained, accurate analyses of power system dynamics are crucial. However, the natural frequency components present in the dynamics make analyses complex. The nonlinearity and confidentiality of grid-connected inverters also hinder controllability. The MG considered in this study consisted of a synchronous generator (the main power source) and multiple grid-connected inverters with storage batteries and virtual synchronous generator (VSG) control. Although smart inverter controls such as VSG contribute to system stabilization, they induce system nonlinearity. Therefore, Koopman mode decomposition (KMD) was utilized in this study for consideration as a future method of data-driven analysis of the measured frequencies and voltages, and a frequency response analysis of the power system dynamics was performed. The Koopman operator is a linear operator on an infinite dimensional space, whereas the original dynamics is a nonlinear map on a finite state space. In other words, the proposed method can precisely analyze all the dynamics of the power system, which involve the complex nonlinearities caused by VSGs.


Author(s):  
Santhoshkumar Thenpennaisivem ◽  
V. Senthilkumar

In this article, a hybrid technique is proposed for improving the transient and small signal response in micro grid using virtual inertia. The proposed hybrid technique is the combined execution of both the emperor penguin optimizer (EPO) and butterfly optimization algorithm (BOA), and hence it is called EPOBOA technique. The major objective of the EPOBOA technique is to “optimize the control parameters to regulate the changes occurred in the grid parameter such as voltage and frequency based on the variations of inertia”. Here, the EPO is executed to modify the parameters of virtual synchronous generator units to achieve the objective function. The searching behaviour of the EPO is adapted by using the hunting behaviour of BOA. The proposed technique is executed in MATLAB/Simulink work site, and the experimental results are analyzed under three test cases: normal condition, irradiation change condition, and load change condition. The performance of the proposed technique is compared with different existing techniques and the calculated frequency deviation index of the proposed technique in all the cases is 0.0051, 0.0045, and 0.0047 and found to be very optimal compared with existing methods. Overall, the experimental outcomes show that the proposed EPOBOA method is more efficient and confirm its ability to solve the issues.


Sign in / Sign up

Export Citation Format

Share Document