A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time Limit

2015 ◽  
Vol 242 (2) ◽  
pp. 369-382 ◽  
Author(s):  
Olcay Polat ◽  
Can B. Kalayci ◽  
Osman Kulak ◽  
Hans-Otto Günther
2018 ◽  
Vol 52 (4-5) ◽  
pp. 1295-1328 ◽  
Author(s):  
Hayet Chentli ◽  
Rachid Ouafi ◽  
Wahiba Ramdane Cherif-Khettaf

The Vehicle Routing Problem with Simultaneous Pickups and Deliveries (VRPSPD) is a variant of the Vehicle Routing Problem. In this variant, an unlimited fleet of capacitated vehicles is used to satisfy both pickup and delivery demands of each customer simultaneously. In many practical situations, such a fleet is costly. The present study extends the VRPSPD by assuming a fixed number of vehicles when the constraint of visiting all customers is relaxed. More specifically, profits are assigned to the customers with the goal of maximizing the difference between collected profits and routing costs. This variant is named Profitable Tour Problem with Simultaneous Pickup and Delivery services (PTPSPD). We present a mathematical model run with the CPLEX solver. We also present an extension of the Adaptive Large Neighborhood Search heuristic (ALNS) called selective ALNS (sALNS). sALNS uses a new operator selection that executes two phases alternately: the random and the score-dependent phases. An appropriate update of scores is employed. Furthermore, sALNS explores missed regions of the search space by evaluating solutions after the destruction step. Finally, we give tuned insertion and removal operators that handle the constraints of the PTPSPD, as well as a new update of temperature, that helps avoiding local optima, in the Simulated Annealing embedded in sALNS. sALNS is evaluated on 117 new instances with 50–199 customers. A comparison is made between the components of sALNS, the classical ALNS and a recent ALNS heuristic from the literature. sALNS is also evaluated on some VRPSPD instances from the literature. The computational results show that our heuristic provides good quality solutions in reasonable computing time.


2012 ◽  
Vol 12 (1) ◽  
pp. 10 ◽  
Author(s):  
ARIF IMRAN ◽  
LIANE OKDINAWATI

The vehicle routing problem is investigated by using some adaptations of the variable neighborhood search (VNS).The initial solution was obtained by Dijkstra’s algorithm based on cost network constructed by the sweep algorithm andthe 2-opt. Our VNS algorithm use several neighborhoods which were adapted for this problem. In addition, a number oflocal search methods together with a diversification procedure were used. The algorithm was then tested on the data setsfrom the literature and it produced competitive results if compared to the solutions published.


2018 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Alfian Faiz ◽  
Subiyanto Subiyanto ◽  
Ulfah Mediaty Arief

The aim of this work is to develop an intelligent optimization software based on enhanced VNS meta-heuristic to tackle Vehicle Routing Problem with Simultaneous Pickup and Delivery (VRPSPD). An optimization system developed based on enhanced Variable Neighborhood Search with Perturbation Mechanism and Adaptive Selection Mechanism as the simple but effective optimization approach presented in this work. The solution method composed by combining Perturbation based Variable Neighborhood Search (PVNS) with Adaptive Selection  Mechanism (ASM) to control perturbation scheme. Instead of stochastic approach, selection of perturbation scheme used in the algorithm employed an empirical selection based on each perturbation scheme success along the search. The ASM help algorithm to get more diversification degree and jumping from local optimum condition using most successful perturbation scheme empirically in the search process. A comparative analysis with a well-known exact approach is presented to test the solution method in a generated VRPSPD benchmark instance in limited computation time. Then a test to VRPSPD scenario provided by a liquefied petroleum gas distribution company is performed. The test result confirms that solution method present superior performance against exact approach solution in giving best solution for larger sized instance and successfully obtain substantial improvements when compared to the basic VNS and original route planning technique used by a distributor company.


Sign in / Sign up

Export Citation Format

Share Document