scholarly journals A hybrid Constraint Programming/Mixed Integer Programming framework for the preventive signaling maintenance crew scheduling problem

2018 ◽  
Vol 269 (1) ◽  
pp. 341-352 ◽  
Author(s):  
Shahrzad M. Pour ◽  
John H. Drake ◽  
Lena Secher Ejlertsen ◽  
Kourosh Marjani Rasmussen ◽  
Edmund K. Burke
Author(s):  
Guei-Hao Chen ◽  
Jyh-Cherng Jong ◽  
Anthony Fu-Wha Han

Crew scheduling is one of the crucial processes in railroad operation planning. Based on current regulations and working and break time requirements, as well as the operational rules, this process aims to find a duty arrangement with minimal cost that covers all trips. Most past studies considered this subject for railroad systems as an optimization problem and solved it with mathematical programming-based methods or heuristic algorithms, despite numerous logical constraints embedded in this problem. Few studies have applied constraint programming (CP) approaches to tackle the railroad crew scheduling problem. This paper proposes a hybrid approach to solve the problem with a CP model for duty generation, and an integer programming model for duty optimization. These models have been applied to the Kaohsiung depot of Taiwan Railways Administration, the largest railroad operator in Taiwan. The encouraging results show that the proposed approach is more efficient than the manual process and can achieve 30% savings of driver cost. Moreover, the approach is robust and provides flexibility to easily accommodate related operational concerns such as minimizing the number of overnight duties. Thus, this hybrid two-phase approach seems to have the potential for applications to the railroad crew scheduling problems outside Taiwan.


2019 ◽  
pp. 27-35
Author(s):  
Alvaro Neuenfeldt Júnior

Independente do processo industrial, o estudo sobre a alocação de recursos produtivos é atualmente um dos temas mais abordados cientificamente, principalmente quando envolve a busca pela gestão de forma mais eficiente e dinâmica às exigências do mercado ao qual a empresa está inserida. Para tanto, o presente artigo tem por objetivo comparar o desempenho de três técnicas de otimização ao contexto do Job Shop Scheduling Problem (JSSP), sendo uma baseada em modelagens Mixed-Integer Programming (MIP) e outras duas resolvidas com base nos conceitos do Constraint Programming (CP), por meio da utilização de 82 instâncias disponibilizadas pela biblioteca digital OR Library. Como resultados, foi possível verificar que a versão padrão do CP disponibilizado pelo software CPLEX Optimization Studio é o mais eficiente para encontrar soluções ótimas, conforme benchmark realizado com estudos anteriormente publicados cientificamente.


2016 ◽  
Vol 44 (7) ◽  
pp. 752-762 ◽  
Author(s):  
Mahmoud Sharafi Masouleh ◽  
Farshid Salehi ◽  
Fatima Raeisi ◽  
Mojtaba Saleh ◽  
Azade Brahman ◽  
...  

2007 ◽  
Vol 2007 ◽  
pp. 1-18
Author(s):  
Esra Ekinci ◽  
Arslan M. Ornek

We consider the problem of determining realistic and easy-to-schedule lot sizes in a multiproduct, multistage manufacturing environment. We concentrate on a specific type of production, namely, flow shop type production. The model developed consists of two parts, lot sizing problem and scheduling problem. In lot sizing problem, we employ binary integer programming and determine reorder intervals for each product using power-of-two policy. In the second part, using the results obtained of the lot sizing problem, we employ mixed integer programming to determine schedules for a multiproduct, multistage case with multiple machines in each stage. Finally, we provide a numerical example and compare the results with similar methods found in practice.


Sign in / Sign up

Export Citation Format

Share Document