Applying Constraint Programming and Integer Programming to Solve the Crew Scheduling Problem for Railroad Systems: Model Formulation and a Case Study

Author(s):  
Guei-Hao Chen ◽  
Jyh-Cherng Jong ◽  
Anthony Fu-Wha Han

Crew scheduling is one of the crucial processes in railroad operation planning. Based on current regulations and working and break time requirements, as well as the operational rules, this process aims to find a duty arrangement with minimal cost that covers all trips. Most past studies considered this subject for railroad systems as an optimization problem and solved it with mathematical programming-based methods or heuristic algorithms, despite numerous logical constraints embedded in this problem. Few studies have applied constraint programming (CP) approaches to tackle the railroad crew scheduling problem. This paper proposes a hybrid approach to solve the problem with a CP model for duty generation, and an integer programming model for duty optimization. These models have been applied to the Kaohsiung depot of Taiwan Railways Administration, the largest railroad operator in Taiwan. The encouraging results show that the proposed approach is more efficient than the manual process and can achieve 30% savings of driver cost. Moreover, the approach is robust and provides flexibility to easily accommodate related operational concerns such as minimizing the number of overnight duties. Thus, this hybrid two-phase approach seems to have the potential for applications to the railroad crew scheduling problems outside Taiwan.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yawei Qi ◽  
Long Wan ◽  
Zhigang Yan

This paper investigates a scheduling problem on a single machine with maintenance, in which the starting time of the maintenance is given in advance but its duration depends on the load of the machine before the maintenance. The goal is to minimize the makespan. We formulate it as an integer programming model and show that it is NP-hard in the ordinary sense. Then, we propose an FPTAS and point out that a special case is polynomial solvable. Finally, we design fast heuristic algorithms to solve the scheduling problem. Numerical experiments are implemented to evaluate the performance of the proposed heuristic algorithms. The results show the proposed heuristic algorithms are effective.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Qiu Dishan ◽  
He Chuan ◽  
Liu Jin ◽  
Ma Manhao

Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Turgay Türker ◽  
Ayhan Demiriz

It may be very difficult to achieve the optimal shift schedule in call centers which have highly uncertain and peaked demand during short time periods. Overlapping shift systems are usually designed for such cases. This paper studies shift scheduling and rostering problems for inbound call centers where overlapping shift systems are used. An integer programming model that determines which shifts to be opened and how many operators to be assigned to these shifts is proposed for the shift scheduling problem. For the rostering problem both integer programming and constraint programming models are developed to determine assignments of operators to all shifts, weekly days-off, and meal and relief break times of the operators. The proposed models are tested on real data supplied by an outsource call center and optimal results are found in an acceptable computation time. An improvement of 15% in the objective function compared to the current situation is observed with the proposed model for the shift scheduling problem. The computational performances of the proposed integer and constraint programming models for the rostering problem are compared using real data observed at a call center and simulated test instances. In addition, benchmark instances are used to compare our Constraint Programming (CP) approach with the existing models. The results of the comprehensive computational study indicate that the constraint programming model runs more efficiently than the integer programming model for the rostering problem. The originality of this research can be attributed to two contributions: (a) a model for shift scheduling problem and two models for rostering problem are presented in detail and compared using real data and (b) the rostering problem is considered as a task-resource allocation and considerably shorter computation times are obtained by modeling this new problem via CP.


Sign in / Sign up

Export Citation Format

Share Document