Application of the transmission line model for porous electrodes to analyse the impedance response of TiO2 nanotubes in physiological environment

2017 ◽  
Vol 253 ◽  
pp. 599-608 ◽  
Author(s):  
Fanny Hilario ◽  
Virginie Roche ◽  
Alberto Moreira Jorge ◽  
Ricardo Pereira Nogueira
2019 ◽  
Vol 123 (46) ◽  
pp. 27997-28007 ◽  
Author(s):  
Sara Drvarič Talian ◽  
Jernej Bobnar ◽  
Anton Rafael Sinigoj ◽  
Iztok Humar ◽  
Miran Gaberšček

2015 ◽  
Vol 160 ◽  
pp. 313-322 ◽  
Author(s):  
Zyun Siroma ◽  
Naoko Fujiwara ◽  
Shin-ichi Yamazaki ◽  
Masafumi Asahi ◽  
Tsukasa Nagai ◽  
...  

Author(s):  
Sara Drvaric Talian ◽  
Gregor Kapun ◽  
Joze Moskon ◽  
Robert Dominko ◽  
Miran Gaberscek

Abstract The effect of Li2S deposition on the impedance response of Li-S battery cells is investigated using a simplified cell design, systematic impedance spectroscopy measurements combined with transmission line modeling, and a complementary microscopy analysis. Glassy carbon cathodes are employed to build and validate the proposed transmission line model, which is later on employed to investigate the effect of various parameters of Li2S deposit (coverage, thickness, porosity) on cell’s impedance. Among others, the model is applied to study the effect of discharge and self-discharge. Finally, the simplified planar cathode is exchanged with a more conventional mesoporous carbon cathode to determine the effect of Li2S deposition on the impedance of a commercially viable cell design. We have found that Li2S deposit has little effect on the impedance response, owing to its porous structure. The most noticeable change stemming from the process of Li2S deposition is due to the depletion of polysulfide species concentration in the electrolyte, which decreases the chemical capacitance and increases the tail height in the low frequency region of the impedance spectra.


Transmission Line model are an important role in the electrical power supply. Modeling of such system remains a challenge for simulations are necessary for designing and controlling modern power systems.In order to analyze the numerical approach for a benchmark collection Comprehensive of some needful real-world examples, which can be utilized to evaluate and compare mathematical approaches for model reduction. The approach is based on retaining the dominant modes of the system and truncation comparatively the less significant once.as the reduced order model has been derived from retaining the dominate modes of the large-scale stable system, the reduction preserves the stability. The strong demerit of the many MOR methods is that, the steady state values of the reduced order model does not match with the higher order systems. This drawback has been try to eliminated through the Different MOR method using sssMOR tools. This makes it possible for a new assessment of the error system Offered that the Observability Gramian of the original system has as soon as been thought about, an H∞ and H2 error bound can be calculated with minimal numerical effort for any minimized model attributable to The reduced order model (ROM) of a large-scale dynamical system is essential to effortlessness the study of the system utilizing approximation Algorithms. The response evaluation is considered in terms of response constraints and graphical assessments. the application of Approximation methods is offered for arising ROM of the large-scale LTI systems which consist of benchmark problems. The time response of approximated system, assessed by the proposed method, is also shown which is excellent matching of the response of original system when compared to the response of other existing approaches .


1990 ◽  
Vol 26 (2) ◽  
pp. 148 ◽  
Author(s):  
D. Kinowski ◽  
C. Seguinot ◽  
P. Pribetich ◽  
P. Kennis

Sign in / Sign up

Export Citation Format

Share Document