solution theory
Recently Published Documents


TOTAL DOCUMENTS

443
(FIVE YEARS 48)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 9 ◽  
Author(s):  
Camillo La Mesa ◽  
Gianfranco Risuleo

The surface activity of surfactant mixtures is critically analyzed. Cat-anionic systems, in which two ionic species are mixed in non-stoichiometric ratios, are considered. With respect to the solution behavior, where a substantial decrease of cmc is met compared to the pure components, a moderate effect on surface tension, γ, occurs. Compared to the pure species, the decrease of surface tension for such mixtures is not significant, and no clear dependence on the mole fraction anionic/cationic is met. The surface tension is grossly constant in the whole concentration range. Conversely, the interaction parameter for surfaces, βsurf (calculated by the regular solution theory), is more negative than that for micelle formation, βmic. This fact suggests that the desolvation of polar heads of the two species at interfaces is largely different. Very presumably, the underlying rationale finds origin in the sizes and solvation of both polar head groups.


2021 ◽  
Vol 31 (6) ◽  
Author(s):  
Eduardo Abi Jaber ◽  
Christa Cuchiero ◽  
Martin Larsson ◽  
Sergio Pulido

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2893
Author(s):  
Eduardo J. Cueto-Díaz ◽  
Alberto Castro-Muñiz ◽  
Fabián Suárez-García ◽  
Santos Gálvez-Martínez ◽  
Mª Carmen Torquemada-Vico ◽  
...  

In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5121
Author(s):  
Nuo Xu ◽  
Yunjia Jiang ◽  
Wanqi Sun ◽  
Jiahao Li ◽  
Lingyao Wang ◽  
...  

A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol−1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.


Adsorption ◽  
2021 ◽  
Author(s):  
Mauro Luberti ◽  
Roberto Mennitto ◽  
Stefano Brandani ◽  
Giulio Santori ◽  
Lev Sarkisov

AbstractIn this study seven adsorption azeotropes involving binary systems and zeolite-based adsorbents were systematically investigated. Pure component isotherms and mixed-gas adsorption data were taken from published literature except for the benzene–propene system on silicalite, which is newly presented in this work using molecular simulations. Experimental adsorbed phase composition and total amount adsorbed of the azeotropic systems were compared with the predictions of several models including: the ideal adsorbed solution theory (IAST), the heterogeneous ideal adsorbed solution theory (HIAST) and the real adsorbed solution theory (RAST) coupled with the 1-parameter Margules (1-Margules) and the van Laar equations. In the latter two models an additional loading parameter was incorporated in the expression of the excess Gibbs energy to account for the reduced grand potential dependency of the activity coefficients in the adsorbed phase. It was found that the HIAST and RAST–1-Margules models were able to predict the azeotropic behaviour of some systems with good accuracy. However, only the RAST–van Laar model consistently showed an average relative deviation below 3% compared to experimental data for both the adsorbed phase composition and the total amount adsorbed across the systems. This modified van Laar equation is therefore preferable in those engineering applications when the location of adsorption azeotropes is required with great accuracy and when there is lack of detailed characterization of the adsorbent that is needed to carry out molecular simulations.


2021 ◽  
Author(s):  
Simon Stephan ◽  
Hans Hasse

Properties of vapor-liquid equilibria and planar interfaces of binary Lennard-Jones truncated and shifted mixtures were investigated with molecular dynamics simulations, density gradient theory, and conformal solution theory at constant liquid phase composition and temperature. The results elucidate the influence of the liquid phase interactions on the interfacial properties (surface tension, surface excess, interfacial thickness, and enrichment). The studied mixtures differ in the ratios of the dispersion energies of the two components ɛ2/ɛ1 and the binary interaction parameter ξ. By varying ξ and ɛ2/ɛ1, a variety of types of phase behavior is covered by this paper. The dependence of the interfacial properties on the variables ξ and ɛ2/ɛ1 reveals regularities that can be explained by conformal solution theory of the liquid phase. It is thereby shown that the interfacial properties of the mixtures are dominated by the mean liquid phase interactions whereas the vapor phase has only a minor influence.


Sign in / Sign up

Export Citation Format

Share Document