microscopy analysis
Recently Published Documents





Ana Carla PESSUTTO ◽  
Eliena JONKO

Aluminum stands out for being a light, corrosion-resistant, and recyclable metal, achieving wide coverage in the market. When incorporated into alloying elements, it is possible to acquire other desirable characteristics. Alloy 6063, intended for architectural purposes, has aesthetic, structural, and strength functions. This study aims to compare two different staining methods on the surface of anodized profiles of aluminum alloy 6063. Anodized finishing is performed through an electrolytic process using sulfuric acid as an electrolyte to change the surface layer of the material, ensuring a more resistant aluminum oxide film than that formed naturally. For decorative purposes, the anodic film coloration can be performed by several methodologies, including, in this case, the coloration by organic adsorption, with the use of aniline, and the electrolytic coloration, composed of tin sulfate salts, both for obtaining the black color. To compare, neutral saline mist tests, scanning electron microscopy analysis, determination of the anodic layer thickness, and immersion tests with 3.5 percent sodium chloride for 1000 hours. The results obtained highlight that both were shown to be resistant to corrosion due to the fact that they do not present corrosion points when exposed to the neutral saline mist test for 600 hours. In the immersion tests, both remained resistant to sodium chloride. Because both methodologies present satisfactory results in all tests, the quality of the applied stains is ensured, and it is found that they are equivalent when the parameters discussed are used.

Hand ◽  
2022 ◽  
pp. 155894472110669
Lana L. de Lima ◽  
Diego Ariel de Lima ◽  
Thiago H. B. Freire ◽  
Francisco A. A. Almeida ◽  
José A. D. Leite ◽  

Background: The treatment of carpal tunnel syndrome (CTS) by sectioning the transverse carpal ligament (TCL) is not exempt from complications. Some nerve branches may be damaged by the incision. The aim of this study is to identify and map the TCL nerve endings, serving as a guide for sectioning this structure in a zone with less nerve ending density. Methods: Ten TCLs were obtained from fresh frozen cadavers. The TCLs were measured, divided into 3 equal bands (radial, central, and ulnar), and submitted to cryostat sectioning. The sections were subjected to immunofluorescence with the protein gene product (PGP) 9.5 and confocal microscopy analysis. Results: All the specimens contained type I and type IV mechanoreceptors. Neural elements occupied 0.695 ± 0.056% of the ligament area. The density of the neural elements was greater in the radial, followed by the ulnar and central bands, with 0.730 ± 0.083%, 0.686 ± 0.009%, and 0.669 ± 0.031%, respectively. Conclusion: The present findings suggest that the region with the least potential for neural element injury during TCL release is the central third near the transition with the ulnar third. When performed distally to proximally with a slight inclination from the radial to the ulnar, this release compromises the lowest nerve element density. Topographically, the proximal limit of the release is the distal wrist crease, while the distal limit is the intersection of Kaplan cardinal line and the axis of the third webspace.

Sara Drvaric Talian ◽  
Gregor Kapun ◽  
Joze Moskon ◽  
Robert Dominko ◽  
Miran Gaberscek

Abstract The effect of Li2S deposition on the impedance response of Li-S battery cells is investigated using a simplified cell design, systematic impedance spectroscopy measurements combined with transmission line modeling, and a complementary microscopy analysis. Glassy carbon cathodes are employed to build and validate the proposed transmission line model, which is later on employed to investigate the effect of various parameters of Li2S deposit (coverage, thickness, porosity) on cell’s impedance. Among others, the model is applied to study the effect of discharge and self-discharge. Finally, the simplified planar cathode is exchanged with a more conventional mesoporous carbon cathode to determine the effect of Li2S deposition on the impedance of a commercially viable cell design. We have found that Li2S deposit has little effect on the impedance response, owing to its porous structure. The most noticeable change stemming from the process of Li2S deposition is due to the depletion of polysulfide species concentration in the electrolyte, which decreases the chemical capacitance and increases the tail height in the low frequency region of the impedance spectra.

2022 ◽  
Vol 5 (1) ◽  
Anastasiia L. Sivkina ◽  
Maria G. Karlova ◽  
Maria E. Valieva ◽  
Laura L. McCullough ◽  
Timothy Formosa ◽  

AbstractFACT is a histone chaperone that participates in nucleosome removal and reassembly during transcription and replication. We used electron microscopy to study FACT, FACT:Nhp6 and FACT:Nhp6:nucleosome complexes, and found that all complexes adopt broad ranges of configurations, indicating high flexibility. We found unexpectedly that the DNA binding protein Nhp6 also binds to the C-terminal tails of FACT subunits, inducing more open geometries of FACT even in the absence of nucleosomes. Nhp6 therefore supports nucleosome unfolding by altering both the structure of FACT and the properties of nucleosomes. Complexes formed with FACT, Nhp6, and nucleosomes also produced a broad range of structures, revealing a large number of potential intermediates along a proposed unfolding pathway. The data suggest that Nhp6 has multiple roles before and during nucleosome unfolding by FACT, and that the process proceeds through a series of energetically similar intermediate structures, ultimately leading to an extensively unfolded form.

Raja Venkata Sai Kiran Jakkula ◽  
Prabhu Sethuramalingam

In this investigative research work, the surface characteristics of normal paint and multiwall carbon nanotube (MWCNT) paint-coated substrates are studied. The experiments are conducted using ABB IRB 1410 Robot and the end effector of the robot is retrofitted with a high-volume low-pressure atomizer paint spray gun. The nanopaint is prepared by ultrasonication by placing 1 gram of MWCNT in a polyurethane commercial base paint (500 ml). Taguchi design of experiments is used to identify the most efficient use of procedure parameters using the L9 orthogonal array table. Heat transfer of the substrate is found by temperature measurements of the convective heat transfer through extended surfaces. Surface morphology is studied by scanning electron microscope and upright microscopy. Analysis of variance technique is used to find the most influencing input parameters and contribution of values to maximizing surface finish and minimizing the heat transfer effect. The study shows that there is an enhancement in surface finish and minimization of heat transfer in the nanopaint coated substrate when compared with normal paint application using the ABB robot.

2021 ◽  
Vol 12 ◽  
Lina S. Silva-Bermudez ◽  
Tatyana N. Sevastyanova ◽  
Christina Schmuttermaier ◽  
Carolina De La Torre ◽  
Leonie Schumacher ◽  

Macrophages are key innate immune cells that mediate implant acceptance or rejection. Titanium implants degrade over time inside the body, which results in the release of implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the healing activities of macrophages and their release of circulating cytokines is an open question in regenerative medicine. In this study for the first time, we identified the transcriptional program induced and suppressed by TiNPs in human pro-inflammatory and healing macrophages. Microarray analysis revealed that TiNPs altered the expression of 5098 genes in M1 (IFN-γ-stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow cytometry demonstrated, that scavenging activity of stabilin-1 was significantly suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway. Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-mediated clearance function. In summary, this process can result in a significant increase of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic reactions and implant complications.

chaewon Seong ◽  
Pratik Mane ◽  
Hyojung Bae ◽  
seungwon Lee ◽  
Soon Hyung Kang ◽  

Abstract In this study, BiVO4 photoanodes were synthesized using a simple and inexpensive modified successive ionic layer adsorption and reaction (SILAR) method. In particular, the effect of the number of SILAR cycles on the photoelectrochemical (PEC) properties of BiVO4 was evaluated. Scanning electron microscopy analysis revealed the porous surface morphology of the BiVO4 thin layers with irregularly shaped particles formed on the surface of fluorine-doped tin oxide substrates. The crystal structure of BiVO4 was confirmed using X-ray diffraction analysis. The ultraviolet–visible spectrophotometry results indicated that the bandgap energy of the deposited film was approximately 2.4 eV. In addition, the PEC properties of the BiVO4 photoanodes using potentiostat were analyzed. The linear sweep voltammetry curves revealed that the photocurrent density of the BiVO4 samples increased with the increasing number of m-SILAR cycles, and a maximum photocurrent density of approximately 0.83 mA/cm2 was achieved for the BVO-35. These results suggest that an efficient photoelectrode for compact PEC cells can serve as a basis for development.

2021 ◽  
Vol 11 (1) ◽  
Wolfgang J. Mayer ◽  
Andreas Ohlmann ◽  
Anna Schuh ◽  
Siegfried Priglinger ◽  
Thomas Kohnen ◽  

AbstractStudying anterior lens capsule cutting edge profiles from femtosecond laser-assisted capsulotomy procedures performed before and after lens fragmentation. Twenty eyes (10 patients) with age-related cataract underwent femtosecond laser-assisted surgery (FLACS) using the Ziemer Z8 platform. First step of laser surgery was either capsulotomy (group first) or fragmentation (group second). One eye of each patient was assigned randomly, the second eye treated with the different sequence of procedures. After anterior capsule removal, tissue was fixed in cacodylate-buffered solution and cutting-edge profiles were analysed using scanning electron microscopy (SEM). All cases had cataract grade 2 and 3 based on LOCS III grading. SEM analysis showed more smooth edges in the first group, especially in cases with pseudoexfoliation (P = 0.037); more tags and bridges and a significant number of staggered cutting patterns (7 out of 10 cases) in the second group. All cases evolved the same microgroves with “valleys and mountains “ as signs of the photodisruption process. Femtosecond laser capsulotomy should be performed before lens fragmentation minimizing the rate of cutting errors. Especially in eyes with advanced cataract, as intracapsular pressure may increase due to lens fragmentation without anterior capsular opening.

2021 ◽  
Vol 54 (6) ◽  
Matthias Rutzen ◽  
Michael Schulz ◽  
Judith Moosburger-Will ◽  
Philipp Lauff ◽  
Oliver Fischer ◽  

AbstractAs research interest in the additive manufacturing of cementitious materials for structural uses has been continuously increasing, the question of how to incorporate tensile reinforcement in an automated process has gained further importance. Our research describes a carbon fiber-reinforced cementitious composite produced by common extrusion techniques applied in 3D printing as a means to effectively control fiber alignment. Optimization of the mixture design and consistency allows for admixing up to 3 vol.-% chopped carbon fibers, leading to specimens that can reach a flexural strength exceeding 100 N/mm2 without the addition of further continuous reinforcement. Fiber integrity during the process was checked using optical microscopy. Analysis of the microstructure shows that approximately 70% of the fibers are aligned within ± 5° of a preferential direction. Micromechanical single-fiber push-out tests confirm an interfacial fracture toughness typical for strain-hardening systems. The first insights into a ‘lost formwork’ approach commonly employed in 3D printing show that the reinforcement remains effective even when combined with nonreinforced mortar.

Sign in / Sign up

Export Citation Format

Share Document