High-temperature electrolysis of simulated flue gas in solid oxide electrolysis cells

2018 ◽  
Vol 280 ◽  
pp. 206-215 ◽  
Author(s):  
Yifeng Zheng ◽  
Juan Zhou ◽  
Lan Zhang ◽  
Qinglin Liu ◽  
Zehua Pan ◽  
...  
2021 ◽  
Vol 27 (S1) ◽  
pp. 3138-3139
Author(s):  
Søren Bredmose Simonsen ◽  
Waynah Lou Dacayan ◽  
Zhongtao Ma ◽  
Christodoulos Chatzichristodoulou ◽  
Wenjing Zhang ◽  
...  

2013 ◽  
Vol 57 (1) ◽  
pp. 3099-3104 ◽  
Author(s):  
K. J. Yoon ◽  
J.-W. Son ◽  
J.-H. Lee ◽  
B.-K. Kim ◽  
H.-J. Je ◽  
...  

Author(s):  
M. S. Sohal ◽  
J. E. O’Brien ◽  
C. M. Stoots ◽  
V. I. Sharma ◽  
B. Yildiz ◽  
...  

Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL’s test results on high temperature electrolysis (HTE) using solid oxide cells do not provide clear evidence of whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar and co-workers have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte.


2020 ◽  
Author(s):  
Ευαγγελία Ιωαννίδου

Στην παρούσα διατριβή αναπτύχθηκαν και μελετήθηκαν κεραμo-μεταλλικοί ηλεκτροκαταλύτες/ηλεκτρόδια με βάση την εμπορικά διαθέσιμη σκόνη NiO/GDC (65 wt.% NiO – 35 wt.% Ce0.9Gd0.1O2-x). Η τελευταία τροποποιήθηκε με χημικές μεθόδους με σκοπό την προσθήκη FexOy, Au ή/και MoOx. Οι τροποποιημένοι ηλεκτροκαταλύτες χρησιμοποιήθηκαν σε μοναδιαίες κυψελίδες ηλεκτρόλυσης στερεού ηλεκτρολύτη (SOECs) ως ηλεκτρόδια καυσίμου (καθόδου). Σε όλες τις περιπτώσεις των υλικών πραγματοποιήθηκε φυσικοχημικός χαρακτηρισμός με διάφορες τεχνικές, καθώς και μελέτη της οξειδωτικής τους συμπεριφοράς παρουσία Η2Ο και CO2. Παράλληλα, από τις παραπάνω σκόνες παρασκευάστηκε κατάλληλη πάστα, η οποία εναποτέθηκε σε στερεούς ηλεκτρολύτες 8ΥSZ (ZrO2 σταθεροποιημένη με 8 mol% Y2O3) με τη μέθοδο εναπόθεσης με τελάρο (screen printing). Τα παραγόμενα ηλεκτρόδια Ni/GDC, 3 wt.% Αu-Ni/GDC, 3 wt.% Μο-Ni/GDC, 3 wt.% Au − 3wt.% Mo-Ni/GDC και 2 wt.% Fe-Ni/GDC μελετήθηκαν καταλυτικά, χωρίς την επιβολή ρεύματος, σε συνθήκες συν-ηλεκτρόλυσης Η2Ο/CO2 για την αντίστροφη αντίδραση μετατόπισης με ατμό (RWGS), στο θερμοκρασιακό εύρος 800-900 οC, με ανάλυση αερίων προϊόντων/αντιδρώντων. Ο ηλεκτροχημικός χαρακτηρισμός πραγματοποιήθηκε σε κυψελίδες SOECs, δύο ηλεκτροδίων, με ηλεκτρόδιο οξυγόνου τον εμπορικά διαθέσιμο περοβσκίτη LSCoF (La0.6Sr0.4Co0.8Fe0.2O3-δ) σε επαφή με στερεό ηλεκτρολύτη CeO2(Gd2O3)|ZrO2(8 mol% Y2O3). Μετρήσεις πυκνότητας ρεύματος-δυναμικού (i-V), ηλεκτροχημικής εμπέδησης (ΕΙS) και αέριας χρωματογραφίας (GC) συνδυάστηκαν, κατά περίπτωση, για τις διεργασίες ηλεκτρόλυσης του Η2Ο και συν-ηλεκτρόλυσης Η2Ο και CO2. Σκοπός ήταν η αξιολόγηση της ενεργότητας των τροποποιημένων ηλεκτροκαταλυτών και η μελέτη των παραπάνω ηλεκτροχημικών διεργασιών, στο θερμοκρασιακό εύρος 800-900 οC, για συγκεκριμένα μίγματα He-Η2Ο-Η2 και He-Η2Ο-CO2-Η2. Υποδεικνύεται άμεση συσχέτιση της δραστικότητας των δειγμάτων για την αντίδραση του Η2Ο με το Ni και της επακόλουθης οξείδωσής τους με την ηλεκτροχημική τους ενεργότητα. Το H2O, εκτός από το αντιδρών στη διεργασία ηλεκτρόλυσης, λειτουργεί ταυτόχρονα ως πιθανός παράγοντας απενεργοποίησης του Ni/GDC. Η τροποποίηση του Ni/GDC με 3 wt.% Au − 3 wt.% Mo ενίσχυσε την ανθεκτικότητα του ηλεκτροδίου στην οξείδωση από Η2Ο και βελτίωσε την ηλεκτροχημική του ενεργότητα. Ο επιφανειακός εμπλουτισμός με χρυσό, σε συνδυασμό με τον εμπλουτισμό της κύριας μάζας με μολυβδαίνιο, φαίνεται να οδηγεί σε ασθενέστερη αλληλεπίδραση των ροφημένων ειδών H2Oads με το ηλεκτρόδιο. Επίσης, ο σίδηρος αποδείχθηκε υποσχόμενος τροποποιητής του NiΟ/GDC έχοντας τη δυναμική να αντικαταστήσει ή/και να μειώσει τη φόρτιση σε χρυσό. Συγκεκριμένα, η τροποποίηση του Ni/GDC με 0.5 wt.% Fe βελτίωσε την ηλεκτροχημική του ενεργότητα. Από την άλλη πλευρά, η αλληλεπίδραση Ni και Fe, μέσω του σχηματισμού κράματος Ni-Fe, φαίνεται να ενισχύει το δεσμό ρόφησης του H2Ο επιταχύνοντας δυνητικά την υποβάθμιση του Ni/GDC σε κυψελίδες SOECs. Η μελέτη της RWGS αντίδρασης έδειξε ότι οι ηλεκτροκαταλύτες 2 wt.% Fe-Ni/GDC και 3 wt.% Mo-Ni/GDC παρουσίασαν τη βέλτιστη καταλυτική δραστικότητα για την παραγωγή CO. Η βελτιωμένη ενεργότητα των παραπάνω δειγμάτων συσχετίστηκε με την ισχυρότερη ρόφηση του CO2 και επακόλουθη δραστικότητα για την αντίδραση του CO2 με την τροποποιημένη επιφάνεια Ni. Ταυτόχρονα όμως, τα δείγματα αυτά ήταν και τα πιο επιρρεπή στην οξείδωση τόσο από το CO2 όσο και από το Η2Ο.Η μελέτη της ηλεκτροκαταλυτικής παραγωγής CΟ κατά τη συν-ηλεκτρόλυση Η2Ο/CO2 σε κυψελίδα Ni-GDC||YSZ||GDCbarrier|LSCoF έδειξε οτι η διεργασία αυτή εξαρτάται από τον λόγο pH2O/pCO2 και την pH2. Συγκεκριμένα, σε συνθήκες αντίδρασης όπου pΗ2Ο/pCO2 = 1 και pΗ2 = 21 kPa φαίνεται να λαμβάνει χώρα μόνο η ηλεκτρόλυση του Η2Ο και η επακόλουθη αύξηση της pΗ2 σε συνδυασμό με τη μείωση της pH2O μετατοπίζει την RWGS αντίδραση προς την καταλυτική παραγωγή CO. Από την άλλη μεριά, η ηλεκτροχημική αναγωγή του CO2 λαμβάνει χώρα σε συνθήκες αντίδρασης όπου pΗ2Ο/pCO2 < 1 και η έκταση αυτής της διεργασίας εξαρτάται σε μεγάλο βαθμό από την pΗ2. Σε συνθήκες όπου pH2O/pCO2 ≤ 0.3 και παρουσία χαμηλής pΗ2 = 2 kPa, η καταλυτική παραγωγή του CO περιορίζεται από την θερμοδυναμική ισορροπία της RWGS αντίδρασης και το παραγόμενο CO προέρχεται από την ηλεκτρόλυση του CO2. Η κυψελίδα κατά την ηλεκτροχημική αναγωγή του CO2 παρουσίασε υψηλότερες υπερτάσεις και σημαντικά υψηλότερες τιμές αντίστασης πόλωσης επιβεβαιώνοντας την ενεργειακή δυσκολία της συγκεκριμένης διεργασίας συγκριτικά με την ηλεκτρόλυση του Η2Ο.


2017 ◽  
Vol 46 (5) ◽  
pp. 1427-1463 ◽  
Author(s):  
Yun Zheng ◽  
Jianchen Wang ◽  
Bo Yu ◽  
Wenqiang Zhang ◽  
Jing Chen ◽  
...  

High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies.


Sign in / Sign up

Export Citation Format

Share Document