oxygen electrode
Recently Published Documents


TOTAL DOCUMENTS

943
(FIVE YEARS 174)

H-INDEX

57
(FIVE YEARS 11)

2022 ◽  
Vol 9 ◽  
Author(s):  
Ruyue Wang ◽  
Deshuang Hu ◽  
Peng Du ◽  
Xiaodi Weng ◽  
Haolin Tang ◽  
...  

Self-supporting electrodes usually show excellent electrocatalytic performance which does not require coating steps, additional polymer binders, and conductive additives. Rapid in situ growth of highly active ingredient on self-supporting electric conductors is identified as a straight forward path to prepare binder-free and integrated electrodes. Here, Pd-doped Co3O4 loaded on carbon nanofiber materials through electrospinning and heat treatment was efficiently synthesized, and used as a free-standing electrode. Benefiting from its abundant active sites, high surface area and effective ionic conduction capability from three-dimensional (3D) nanofiber framework, Pd-Co3O4@CNF works as bifunctional oxygen electrode and exhibits superior activity and stability superior to commercial catalysts.


Author(s):  
qingjie wang ◽  
Sandrine Ricote ◽  
Yu Wang ◽  
Peter Vang Hendriksen ◽  
Jian-Qiang Wang ◽  
...  

Abstract In this study, a composite oxygen electrode is prepared by infiltrating a protonic-electronic conducting material, Ba0.5Gd0.8La0.7Co2O6−δ (BGLC) into a proton-conducting BaZr0.8Y0.2O3-δ (BZY20) backbone. The composite oxygen electrode is studied in a symmetrical cell configuration (BGLC-BZY20//BZY20//BGLC-BZY20). The electrode and cell performance are characterized via electrochemical impedance spectroscopy (EIS) with varying the operating conditions, including temperatures, oxygen, and steam partial pressures, with the purpose to identify and characterize the different electrochemical processes taking place in the oxygen electrode. Three electrode reaction processes are observed in the impedance spectra, which are tentatively assigned to i) diffusion of adsorbed oxygen/proton migration/hydroxyl formation, ii) oxygen reduction, and iii) charge transfer, going from the low- to high-frequency range. The BGLC-BZY20 electrode developed in this work shows a low polarization resistance of 0.22, 0.58, and 1.43 Ω cm2 per single electrode in 3 % humidified synthetic air (21% O2/79% N2) at 600, 550, and 500 °C, respectively. During long-term measurement, the cell shows no degradation in the first 350 hours but degrades afterward possibly due to insufficient material stability.


Author(s):  
Doyeub Kim ◽  
Imdadullah Thaheem ◽  
Hyeongmin Yu ◽  
Jeong Hwa Park ◽  
Kang Taek Lee

Solid oxide cells (SOCs) allow the eco-friendly and direct conversion between chemical energies (e.g., hydrogen) and electric power, effectively mitigating the environmental issues associated with excessive fossil fuel consumption. Herein,...


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3435
Author(s):  
Simone Anelli ◽  
Luis Moreno-Sanabria ◽  
Federico Baiutti ◽  
Marc Torrell ◽  
Albert Tarancón

The enhancement of solid oxide cell (SOC) oxygen electrode performance through the generation of nanocomposite electrodes via infiltration using wet-chemistry processes has been widely studied in recent years. An efficient oxygen electrode consists of a porous backbone and an active catalyst, which should provide ionic conductivity, high catalytic activity and electronic conductivity. Inkjet printing is a versatile additive manufacturing technique, which can be used for reliable and homogeneous functionalization of SOC electrodes via infiltration for either small- or large-area devices. In this study, we implemented the utilization of an inkjet printer for the automatic functionalization of different gadolinium-doped ceria scaffolds, via infiltration with ethanol:water-based La1−xSrxCo1−yFeyO3−δ (LSCF) ink. Scaffolds based on commercial and mesoporous Gd-doped ceria (CGO) powders were used to demonstrate the versatility of inkjet printing as an infiltration technique. Using yttrium-stabilized zirconia (YSZ) commercial electrolytes, symmetrical LSCF/LSCF–CGO/YSZ/LSCF–CGO/LSCF cells were fabricated via infiltration and characterized by SEM-EDX, XRD and EIS. Microstructural analysis demonstrated the feasibility and reproducibility of the process. Electrochemical characterization lead to an ASR value of ≈1.2 Ω cm2 at 750 °C, in the case of nanosized rare earth-doped ceria scaffolds, with the electrode contributing ≈0.18 Ω cm2. These results demonstrate the feasibility of inkjet printing as an infiltration technique for SOC fabrication.


Author(s):  
K. B. Csomó ◽  
B. Alasztics B ◽  
A. P. Sándor ◽  
A. A. Belik ◽  
G. Varga ◽  
...  

AbstractCytochrome c is a member of the respiratory chain of the mitochondria. Non-membrane-bound (free) cytochrome c can be reduced by gluthatione as well as ascorbic acid. We investigated the effect of pH, Ca2+, Mg2+ and anionic phospholipids on the reduction of cytochrome c by glutathione.The reduction of cytochrome c by thiols was measured using photometry. Mitochondrial oxygen consumption was detected by use of oxygen electrode. Glutathione does not reduce cytochrome c at pH = 7.0 in the absence of Ca2+ and Mg2+. The reduction of cytochrome c by glutathione is inhibited by anionic lipids, especially cardiolipin. The typical conditions of apoptosis—elevated pH, Ca2+ level and Mg2+—increases the reduction of cytochrome c. Glutathione (5 mM) causes increased mitochondrial O2 consumption at pH = 8.0, in the presence of ADP either 1 mM Mg2+ or 1 mM Ca2+. Our results suggest that membrane bound cyt c does not oxidize glutathione. Free (not membrane bound) cytochrome c can oxidize glutathione. In mitochondria, O2 is depleted only in the presence of ADP, so the O2 depletion observed in the presence of glutathione can be related to the respiratory chain. Decreased glutathione levels play a role in apoptosis. Therefore, membrane unbound cyt c can contribute to apoptosis by oxidation of glutathione.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1868
Author(s):  
Michal Szczepanczyk ◽  
Tautgirdas Ruzgas ◽  
Fredrika Gullfot ◽  
Anna Gustafsson ◽  
Sebastian Björklund

The generation of reactive oxygen species presents a destructive challenge for the skin organ and there is a clear need to advance skin care formulations aiming at alleviating oxidative stress. The aim of this work was to characterize the activity of the antioxidative enzyme catalase in keratinocytes and in the skin barrier (i.e., the stratum corneum). Further, the goal was to compare the activity levels with the corresponding catalase activity found in defatted algae biomass, which may serve as a source of antioxidative enzymes, as well as other beneficial algae-derived molecules, to be employed in skin care products. For this, an oxygen electrode-based method was employed to determine the catalase activity and the apparent kinetic parameters for purified catalase, as well as catalase naturally present in HaCaT keratinocytes, excised stratum corneum samples collected from pig ears with various amounts of melanin, and defatted algae biomass from the diatom Phaeodactylum tricornutum. Taken together, this work illustrates the versatility of the oxygen electrode-based method for characterizing catalase function in samples with a high degree of complexity and enables the assessment of sample treatment protocols and comparisons between different biological systems related to the skin organ or algae-derived materials as a potential source of skin care ingredients for combating oxidative stress.


Ionics ◽  
2021 ◽  
Author(s):  
Yanting Tian ◽  
Pingping Wu ◽  
Xu Zhang ◽  
Lili Ding ◽  
Yuan Li ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1394
Author(s):  
Jing Wang ◽  
Heng Kong ◽  
Haihong Zhong ◽  
Yu Jiang ◽  
Fei Guo ◽  
...  

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), namely, so-called oxygen electrode reactions, are two fundamental half-cell reactions in the energy storage and conversion devices, e.g., zinc–air batteries and fuel cells. However, the oxygen electrode reactions suffer from sluggish kinetics, large overpotential and complicated reaction paths, and thus require efficient and stable electrocatalysts. Transition-metal-based layered double hydroxides (LDHs) and their derivatives have displayed excellent catalytic performance, suggesting a major contribution to accelerate electrochemical reactions. The rational regulation of electronic structure, defects, and coordination environment of active sites via various functionalized strategies, including tuning the chemical composition, structural architecture, and topotactic transformation process of LDHs precursors, has a great influence on the resulting electrocatalytic behavior. In addition, an in-depth understanding of the structural performance and chemical-composition-performance relationships of LDHs-based electrocatalysts can promote further rational design and optimization of high-performance electrocatalysts. Finally, prospects for the design of efficient and stable LDHs-based materials, for mass-production and large-scale application in practice, are discussed.


Sign in / Sign up

Export Citation Format

Share Document