Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system

Energy ◽  
2014 ◽  
Vol 77 ◽  
pp. 133-143 ◽  
Author(s):  
G. Bruni ◽  
S. Cordiner ◽  
V. Mulone
Author(s):  
Yan Ma ◽  
Jian Chen ◽  
Junmin Wang

Abstract In this paper, a multi-objective energy management strategy with an adaptive equivalent factor is proposed to improve the fuel economy, system durability, and charge-sustenance performance of fuel cell hybrid electric vehicles. Firstly, the total hydrogen consumption and degradation cost of power sources can be calculated by flexible empirical models. Then, the multi-objective optimization problem can be transformed into an objective function, which can be solved by quadratic programming to improve the real-time performance. Furthermore, an adaptive Unscented Kalman filter is designed to estimate the aging state of the fuel cell system. The equivalent factor in the objective function can be adaptively updated by the estimated aging state, which can balance the conflict between the fuel economy and the system durability while keeping the state-of-charge in an ideal range. Finally, simulation results show that when the fuel cell system is obviously damaged during the operation, the proposed energy management strategy still can minimize the total cost and maintain the charge-sustenance performance under different driving cycles compared with other methods.


Author(s):  
Han Zhang ◽  
Jibin Yang ◽  
Jiye Zhang ◽  
Pengyun Song ◽  
Ming Li

Achieving an optimal operating cost is a challenge for the development of hybrid tramways. In the past few years, in addition to fuel costs, the lifespan of the power source is being increasingly considered as an important factor that influences the operating cost of a tramway. In this work, an optimal energy management strategy based on a multi-mode strategy and optimisation algorithm is described for a high-power fuel cell hybrid tramway. The objective of optimisation is to decrease the operating costs under the conditions of guaranteeing tramway performance. Besides the fuel costs, the replacement cost and initial investment of all power units are also considered in the cost model, which is expressed in economic terms. Using two optimisation algorithms, a multi-population genetic algorithm and an artificial fish swarm algorithm, the hybrid system's power targets for the energy management strategy were acquired using the multi-objective optimisation. The selected case study includes a low-floor light rail vehicle, and experimental validations were performed using a hardware-in-the-loop workbench. The results testify that an optimised energy management strategy can fulfil the operational requirements, reduce the daily operation costs and improve the efficiency of the fuel cell system for a hybrid tramway.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3713 ◽  
Author(s):  
Mohsen Kandidayeni ◽  
Alvaro Macias ◽  
Loïc Boulon ◽  
João Pedro F. Trovão

An energy management strategy (EMS) efficiently splits the power among different sources in a hybrid fuel cell vehicle (HFCV). Most of the existing EMSs are based on static maps while a proton exchange membrane fuel cell (PEMFC) has time-varying characteristics, which can cause mismanagement in the operation of a HFCV. This paper proposes a framework for the online parameters identification of a PMEFC model while the vehicle is under operation. This identification process can be conveniently integrated into an EMS loop, regardless of the EMS type. To do so, Kalman filter (KF) is utilized to extract the parameters of a PEMFC model online. Unlike the other similar papers, special attention is given to the initialization of KF in this work. In this regard, an optimization algorithm, shuffled frog-leaping algorithm (SFLA), is employed for the initialization of the KF. The SFLA is first used offline to find the right initial values for the PEMFC model parameters using the available polarization curve. Subsequently, it tunes the covariance matrices of the KF by utilizing the initial values obtained from the first step. Finally, the tuned KF is employed online to update the parameters. The ultimate results show good accuracy and convergence improvement in the PEMFC characteristics estimation.


Sign in / Sign up

Export Citation Format

Share Document