scholarly journals Impact of the acceleration intensity of a passenger car in a road test on energy consumption

Energy ◽  
2021 ◽  
pp. 120429
Author(s):  
M. Graba ◽  
J. Mamala ◽  
A. Bieniek ◽  
Z. Sroka
2021 ◽  
pp. 100069
Author(s):  
Maria Vittoria Prati ◽  
Maria Antonietta Costagliola ◽  
Rocco Giuzio ◽  
Corrado Corsetti ◽  
Carlo Beatrice

Author(s):  
Midhun Muraleedharan ◽  
◽  
Amitabh Das ◽  
Dr. Mohammad Rafiq Agrewale ◽  
Dr. K.C. Vora ◽  
...  

Hybridization is important to obtain the advantages of both the engine and motor as the sources of propulsion. This paper discusses the effect of hybridization of powertrain on vehicle performance. The Hybrid architectures are differentiated on the basis percentage of power dependency on the engine and motor. Passenger car with hybridization ratios of 20%, 40%, 60%, 80% and 100% are modelled on MATLAB/Simulink using the backward facing approach with the engine and motor specifications remaining constant. The hybridizations ratios and the energy consumption in terms of fuel and battery energy are obtained from the model and compared. Neural network is implemented to determine the fuel consumption. The outputs can be used by a system designer to determine a desirable hybridization factor based on the requirements dictated by the specific application.


2019 ◽  
Vol 178 (3) ◽  
pp. 228-234
Author(s):  
Wojciech GIS ◽  
Maciej GIS ◽  
Piotr WIŚNIOWSKI ◽  
Mateusz BEDNARSKI

Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM 2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.


2021 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek

The analysis of energy consumption in a hybrid drive system of a passenger car in real road conditions is an important factor determining its operational indicators. The article presents energy consumption analysis of a car equipped with an advanced Plug-in Hybrid Drive System (PHEV), driving in real road conditions on a test section of about 51 km covered in various environmental conditions and seasons. Particular attention was paid to the energy consumption resulting from the cooperation of two independent drive units, analyzed in terms of the total energy expenditure. The energy consumption obtained from fuel and energy collected from the car’s batteries for each run over the total distance of 12,500 km was summarized. The instantaneous values of energy consumption for the hybrid drive per kilometer of distance traveled in car’s real operating conditions range from 0.6 to 1.4 MJ/km, with lower values relating to the vehicle operation only with electric drive. The upper range applies to the internal combustion engine, which increases not only the energy expenditure in the TTW (Tank-to-Wheel) system, but also CO2 emissions to the environment. Based on the experimental data, the curves of total energy consumption per kilometer of the road section traveled were determined, showing a close correlation with the actual operating conditions. Obtained values were compared with homologation data from the WLTP test of the tested passenger car, where the average value of energy demand is 1.1 MJ/km and the CO2 emission is 23 g/km.


Sign in / Sign up

Export Citation Format

Share Document