hybrid drive
Recently Published Documents


TOTAL DOCUMENTS

233
(FIVE YEARS 60)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek

The analysis of energy consumption in a hybrid drive system of a passenger car in real road conditions is an important factor determining its operational indicators. The article presents energy consumption analysis of a car equipped with an advanced Plug-in Hybrid Drive System (PHEV), driving in real road conditions on a test section of about 51 km covered in various environmental conditions and seasons. Particular attention was paid to the energy consumption resulting from the cooperation of two independent drive units, analyzed in terms of the total energy expenditure. The energy consumption obtained from fuel and energy collected from the car’s batteries for each run over the total distance of 12,500 km was summarized. The instantaneous values of energy consumption for the hybrid drive per kilometer of distance traveled in car’s real operating conditions range from 0.6 to 1.4 MJ/km, with lower values relating to the vehicle operation only with electric drive. The upper range applies to the internal combustion engine, which increases not only the energy expenditure in the TTW (Tank-to-Wheel) system, but also CO2 emissions to the environment. Based on the experimental data, the curves of total energy consumption per kilometer of the road section traveled were determined, showing a close correlation with the actual operating conditions. Obtained values were compared with homologation data from the WLTP test of the tested passenger car, where the average value of energy demand is 1.1 MJ/km and the CO2 emission is 23 g/km.


Author(s):  
Emilia M. Szumska

Growing environmental concern prompts vehicle users to search for cleaner and ecological transport modes. Many consumers and organizations have decided to replace conventional diesel or gasoline powered vehicles with alternative drive or alternative-powered vehicles. Operating conditions may have a heavy influence on the operating parameters of vehicles, such as: airpollution emission, energy consumption and fuel consumption. This paper presents a comparative analysis of the life cycle of conventional and hybrid drive vehicles in various driving conditions. The presented LCA results show that replacing a conventional diesel or gasoline vehicle with a hybrid electric drive vehicle results in approximately 40 % lower total lifetime air-pollutant emissions than those of conventional drive vehicles in urban driving conditions.


2021 ◽  
Author(s):  
Mateusz Szramowiat ◽  
Andrzej Szałek

The article presents the issues of energy recovery in the hybrid drive system of a vehicle Toyota Yaris 1,5 Hybrid. Road tests of a vehicle equipped with a hybrid drive system were carried out in accordance with the recommendations of the RDE test. In these studies, measurements of braking energy recovery were carried out in urban, rural and motorway traffic conditions. The analysis of the obtained test results may constitute a premise for the creation of an appropriate strategy for the operation of the hybrid drive system in terms of meeting the requirements of the currently prepared Euro 7 standard.


2021 ◽  
Author(s):  
Bartłomiej Urbański ◽  
Grzegorz Przybyła

The International Automobile Federation (FIA) over the last few years consistently implements the strategy of introducing hybrid and electric drivetrains to all motorsport competitions. The article discusses the implementation of a hybrid drivetrain system powered by 48V for such FIA rally cars groups like Rally2, Rally3 and Rally4 based on current discussions held at the FIA Technical Working Groups. The implementation of hybrid drive systems in rally cars was analysed in terms of their advantages and disadvantages. In the case of this application the important aspect is the assumption regarding an increase in performance, while keeping a high level of safety and reasonable costs. Additionally, the assumption is to reduce the emissions of harmful substances produced by rally cars. The article concludes selection of elements of the above-mentioned system for further reasearch were presented. An analysis and calculations of the energy recoverable from regenerative braking using the BISG on a given section of the rally were carried out. Conclusions were also drawn regarding further work that will be carried out to successfully implement the above-mentioned systems for rally cars.


2021 ◽  
Author(s):  
Matteo Guardamagna ◽  
Ronny Eichler ◽  
Rafael Pedrosa ◽  
Arno Aarts ◽  
Arne F Meyer ◽  
...  

Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and temporal scales and to link neural activity to an animal's behavior. A major challenge is to measure within- and across-layer information in actively behaving animals, in particular in mice that have become a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon probes to simultaneously measure across-layer information. The flexible, open-source design allows custom spatial arrangements of tetrode arrays and silicon probes to generate areas-specific layouts. We show that large numbers of neurons and layer-resolved local field potentials can be recorded from the same brain region across weeks without loss in electrophysiological signal quality. The drive's light-weight structure (3.5 g) leaves animal behavior largely unchanged during a variety of experimental paradigms, enabling the study of rich, naturalistic behaviors. We demonstrate the power of the Hybrid Drive in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to the oscillatory activity across hippocampal layers.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3966
Author(s):  
Jarosław Mamala ◽  
Michał Śmieja ◽  
Krzysztof Prażnowski

The market demand for vehicles with reduced energy consumption, as well as increasingly stringent standards limiting CO2 emissions, are the focus of a large number of research works undertaken in the analysis of the energy consumption of cars in real operating conditions. Taking into account the growing share of hybrid drive units on the automotive market, the aim of the article is to analyse the total unit energy consumption of a car operating in real road conditions, equipped with an advanced hybrid drive system of the PHEV (plug-in hybrid electric vehicles) type. In this paper, special attention has been paid to the total unit energy consumption of a car resulting from the cooperation of the two independent power units, internal combustion and electric. The results obtained for the individual drive units were presented in the form of a new unit index of the car, which allows us to compare the consumption of energy obtained from fuel with the use of electricity supported from the car’s batteries, during journeys in real road conditions. The presented research results indicate a several-fold increase in the total unit energy consumption of a car powered by an internal combustion engine compared to an electric car. The values of the total unit energy consumption of the car in real road conditions for the internal combustion drive are within the range 1.25–2.95 (J/(kg · m)) in relation to the electric drive 0.27–1.1 (J/(kg · m)) in terms of instantaneous values. In terms of average values, the appropriate values for only the combustion engine are 1.54 (J/(kg · m)) and for the electric drive only are 0.45 (J/(kg · m)) which results in the internal combustion engine values being 3.4 times higher than the electric values. It is the combustion of fuel that causes the greatest increase in energy supplied from the drive unit to the car’s propulsion system in the TTW (tank to wheels) system. At the same time this component is responsible for energy losses and CO2 emissions to the environment. The results were analysed to identify the differences between the actual life cycle energy consumption of the hybrid powertrain and the WLTP (Worldwide Harmonized Light-Duty Test Procedure) homologation cycle.


2021 ◽  
Vol 11 (11) ◽  
pp. 5001
Author(s):  
Robin Masser ◽  
Karl Heinz Hoffmann

Energy savings in the traffic sector are of considerable importance for economic and environmental considerations. Recuperation of mechanical energy in commercial vehicles can contribute to this goal. One promising technology rests on hydraulic systems, in particular for trucks which use such system also for other purposes such as lifting cargo or operating a crane. In this work the potential for energy savings is analyzed for commercial vehicles with tipper bodies, as these already have a hydraulic onboard system. The recuperation system is modeled based on endoreversible thermodynamics, thus providing a framework in which realistic driving data can be incorporated. We further used dissipative engine setups for modeling both the hydraulic and combustion engine of the hybrid drive train in order to include realistic efficiency maps. As a result, reduction in fuel consumption of up to 26% as compared to a simple baseline recuperation strategy can be achieved with an optimized recuperation control.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2872
Author(s):  
Andrzej Szałek ◽  
Ireneusz Pielecha

The development of internal combustion engines is currently based around the ideas of downsizing and rightsizing. These trends, however, are not very widespread in vehicles with hybrid drive systems. Nevertheless, the authors analyzed the performance indicators of hybrid drives in downsized vehicles. Two generations of a vehicle model, equipped with hybrid drive systems, were used in the analysis in which not only the design of the internal combustion engine was changed, but also other hybrid drive systems (including the transmission, electric motors and high-voltage batteries). The paper analyzes the energy flow in two hybrid vehicles of different generations during tests in real road driving conditions in accordance with the requirements of the RDE (real driving emissions) tests. The authors have confirmed that newer vehicle designs extend the vehicle range by 38% in the electric mode under the conditions of road traffic (68% in the urban conditions). The application of a combustion engine with better operating indexes did not result in its greater load, but led to limitation of the maximum pressure-volume (PV) diagram. The change of the battery to Li-ion, despite its lower electric and energy capacity, led to an increase in vehicle’s working parameters (power and regenerative braking).


2021 ◽  
Vol 1129 (1) ◽  
pp. 012063
Author(s):  
M E Nikolaev ◽  
I A Nesmianov ◽  
A G Ivanov ◽  
V V Dyashkin-Titov
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1073
Author(s):  
Tomasz Miazga ◽  
Grzegorz Iwański ◽  
Marcin Nikoniuk

The paper presents a power electronic conversion system and its control for a fuel cell and a battery-based hybrid drive system for a motor glider. The energy conversion system is designed in such a way that the fuel cell gives power equal to the electric drive power demand for horizontal flight, whereas during motor glider take-off and climbing, the fuel cell is supported by the battery. The paper presents the power demand related to the assumed mission profile, the main components of the hybrid drive system and its holistic structure, and details of power electronics control. Selected stationary experimental test results related to the energy conversion and drive system are shown. Some results related to the aircraft tests on a runway are presented.


Sign in / Sign up

Export Citation Format

Share Document