A Novel Food Waste Management Framework Combining Optical Sorting System and Anaerobic Digestion: A Case Study in Malaysia

Energy ◽  
2021 ◽  
pp. 121094
Author(s):  
Kok Sin Woon ◽  
Zhen Xin Phuang ◽  
Zuchao Lin ◽  
Chew Tin Lee
2021 ◽  
Vol 13 (12) ◽  
pp. 6894
Author(s):  
Shakira R. Hobbs ◽  
Tyler M. Harris ◽  
William J. Barr ◽  
Amy E. Landis

The environmental impacts of five waste management scenarios for polylactic acid (PLA)-based bioplastics and food waste were quantified using life cycle assessment. Laboratory experiments have demonstrated the potential for a pretreatment process to accelerate the degradation of bioplastics and were modeled in two of the five scenarios assessed. The five scenarios analyzed in this study were: (1a) Anaerobic digestion (1b) Anaerobic digestion with pretreatment; (2a) Compost; (2a) Compost with pretreatment; (3) Landfill. Results suggested that food waste and pretreated bioplastics disposed of with an anaerobic digester offers life cycle and environmental net total benefits (environmental advantages/offsets) in several areas: ecotoxicity (−81.38 CTUe), eutrophication (0 kg N eq), cumulative energy demand (−1.79 MJ), global warming potential (0.19 kg CO2), and human health non-carcinogenic (−2.52 CTuh). Normalized results across all impact categories show that anaerobically digesting food waste and bioplastics offer the most offsets for ecotoxicity, eutrophication, cumulative energy demand and non-carcinogenic. Implications from this study can lead to nutrient and energy recovery from an anaerobic digester that can diversify the types of fertilizers and decrease landfill waste while decreasing dependency on non-renewable technologies. Thus, using anaerobic digestion to manage bioplastics and food waste should be further explored as a viable and sustainable solution for waste management.


2020 ◽  
Vol 12 (4) ◽  
pp. 1595 ◽  
Author(s):  
Aisha Al-Rumaihi ◽  
Gordon McKay ◽  
Hamish R. Mackey ◽  
Tareq Al-Ansari

Food waste is a significant contributor to greenhouse gas emissions (GHG) and therefore global warming. As such, the management of food waste can play a fundamental role in the reduction of preventable emissions associated with food waste. In this study, life cycle assessment (LCA) has been used to evaluate and compare the environmental impact associated with two composting techniques for treating food waste using SimaPro software; windrow composting and the hybrid anaerobic digestion (AD) method. The study, based on a 1 tonne of food waste as a functional unit for a case study in the State of Qatar, concludes that anaerobic digestion combined composting presents a smaller environmental burden than windrow composting. The majority of the emissions generated are due to the use of fossil fuels during transportation, which correspond to approximately 60% of the total impact, followed by the impact of composting with 40% of the impact especially in terms of global warming potential. Environmental assessment impacts were the highest in windrow composting for the acidification impact category (9.39 × 10 − 1 kg SO2 eq). While for AD combined composting the impact was highest for the human toxicity impact category (3.47 × 10 kg 1,4 − DB eq).


2020 ◽  
Vol 257 ◽  
pp. 113988 ◽  
Author(s):  
Jingxin Zhang ◽  
Qiang Hu ◽  
Yiyuan Qu ◽  
Yanjun Dai ◽  
Yiliang He ◽  
...  

2020 ◽  
Vol 246 ◽  
pp. 118987 ◽  
Author(s):  
Stefano Ghinoi ◽  
Francesco Silvestri ◽  
Bodo Steiner

Sign in / Sign up

Export Citation Format

Share Document