Global Warming
Recently Published Documents


TOTAL DOCUMENTS

16988
(FIVE YEARS 8320)

H-INDEX

201
(FIVE YEARS 60)

Author(s):  
Shobana Mahalingam ◽  
Meka Sai Deep ◽  
Kotha Sai Krishna

Since most countries have an extensive forest resources, there are often, if not constantly, fires that erupt in these countries from these causes. The majority of vulnerable areas are found in warm climates. Since its highest elevation is a hundred and theta, this piece of infrastructure enables substantial vegetation, but since summers are hot and arid, the risks an overload. When global warming gets more intense, these types of disasters will become more frequent and worse. Much more land in the seasonal forest fires have been lost each year due to a destructive cutting practises, the old forestry, as well as assets, such as private residences and other structures. Additionally, it puts firefighters and the general public at risk, who on an equal scale suffer from a lot of death and illness each year. this sensor, microprocessor, and network technology] developed greatly expanded our] so we are now able to reliably detect the current spread of forest fires and begin to respond quickly to their progression. After natural timberland fires are set, which are frequent in remote regions where trees have not been selectively logged, they burn down into tinder, then new trees grow from seeds in their ashes, the older ones' fuel die and that spread. These pieces are particularly susceptible to being set on fire, which is an excellent location for matches and pyrotechnics. Although many a midsummer's day can cause a flame to erupt, the wick to expand, it can also be stoked by the normal process of human activities like smoking or using a heat source. Start running the process just as soon as the components are ready to go up in the flame. As the breeze expands the flame, the basic element of the vapour gets built up.


Author(s):  
María Victoria Brizio ◽  
Facundo Cabezas-Cartes ◽  
Jimena Beatriz Fernández ◽  
Rodrigo Gómez Alés ◽  
Luciano Javier Avila

Reptiles’ body temperature is strongly influenced by the thermal quality of microhabitats, exploiting the favourable environmental temperatures, and avoiding exposure to extreme thermal conditions. For these reasons, reptiles’ populations are considered to be especially vulnerable to changes in environmental temperatures produced by climate change. Here, we study the thermal physiology of the Critically Endangered lizard Liolaemus cuyumhue Avila, Morando, Perez and Sites, 2009. We hypothesise that, (1) there is a thermal coadaptation between optimal temperature for locomotor performance of L. cuyumhue and its thermal preference; (2) L. cuyumhue lives in an environment with low thermal quality; (3) a raise in environmental temperatures due to global warming will impose a decrement in locomotor speed represented by lower warming tolerance and narrower thermal safety margins, increasing their already high vulnerability. We registered field body temperatures (Tb), preferred body temperatures (Tpref), the operative (Te), and the thermal sensitivity of locomotion at different body temperatures. Our results indicate that this lizard is not currently under environmental stress or exceeding its thermal limits, but that it is thermorregulating below Tpref to avoid overheating, and that an increase in environmental temperature higher than 3.5 °C will strongly affect the use of microhabitats with direct sun exposure.


2021 ◽  
Author(s):  
Young Wook Ko ◽  
Dong Seok Lee ◽  
Sanghee Kim ◽  
Jeong Ha Kim ◽  
Han-Gu Choi

Abstract Short-term variability, spatial variability, and the vertical distribution of an intertidal macroalgal assemblage were examined on the coast of Barton Peninsula, Maxwell Bay, King George Island, Antarctica. Sampling was performed during the three austral summer seasons from November 2016 to January 2019. The sampling interval for short-term variability was 1–2 months. Sampling for spatial variability was performed at two sites 400 m apart. Eighteen algal species were identified, with 75% relative coverage of the predominant red Iridaea cordata and endemic brown Phaeurus antarcticus. Summer abundance can be described as a shift from I. cordata to P. antarcticus, and the change in color is intuitively presented using a contour plot for the first time. Short-term variation in the macroalgal assemblage showed 78.35% similarity between one month and 64.61% similarity between two months. The spatial variation analysis indicated 77.13% similarity between the assemblage at the two sites. If global warming continues, the algal population of this region is expected to expand. P. antarcticus, which is primarily found in the subtidal zone, is predicted to relocate southward or higher in the near future. Long-term monitoring of this research region, which is dominated by the two species, is warranted to determine the impact of global warming on the macroalgal assemblage.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 675
Author(s):  
Hui Chao ◽  
Mingcai Hou ◽  
Wenjian Jiang ◽  
Haiyang Cao ◽  
Xiaolin Chang ◽  
...  

The Jurassic was mainly a “greenhouse” period characterized by global warming and by significant peat accumulations in some continental basins. However, studies of Jurassic climate and environments have mainly focused on marine records and only a few on terrestrial sediments. Yili Basin, a mid-latitude terrestrial basin in present Northwest China, included accumulation of the important recoverable coal seams. In this study, geological data, clay mineral analysis, and palynological assemblages were employed on fine-grained samples from the Su’asugou section in southern Yili Basin. The factors (paleoclimate, depositional conditions, and paleo-vegetation) impacting peat accumulation were investigated. The results suggest that the siliciclastics may have been derived from exposed Carboniferous rocks in a continental arc environment. A warm and humid paleoclimate in the Yili basin dominated during the early-Early Jurassic deposition of the Badaowan Formation and the Middle Jurassic deposition of the Xishanyao Formation. This climate contributed to high sedimentary rates and to a high productivity of peat-forming paleo-vegetation that was preserved under dysoxic conditions. In contrast, during the late-Early Jurassic between these two formations, the Sangonghe Formation was an interval of relatively aridity that included red beds preserved under more hypoxic sedimentary conditions, and with an interruption in peat formation and preservation.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 153
Author(s):  
Rocío L. Pérez ◽  
Caitlan E. Ayala ◽  
Jong-Yoon Park ◽  
Jin-Woo Choi ◽  
Isiah M. Warner

Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.


2021 ◽  
Author(s):  
Chenxi Hu ◽  
Chi-Yung Tam ◽  
Xinwei Li ◽  
Kangning Huang ◽  
Chao Ren ◽  
...  

Abstract The impacts of future urban development and global warming forcing on hourly extreme rainfall over the Pearl River Delta (PRD) area have been investigated, by dynamically downscaling General Circulation Model (GCM) outputs using the Weather Research and Forecasting Model (WRF) at convection-permitting resolution, coupled with an Urban Canopy Model (UCM). Three downscaling experiments corresponding to different urban land cover (1999 and projected 2030) and climate (1951-to-2000 and 2001-to-2050 GCM simulations) were designed. Near-future climate change (up to 2050) and 1999-to-2030 urban development effects on PRD extreme precipitation were then examined. Results show that climate change and rapid urban development forcing have comparable positive effects on the intensity as well as heavy hourly rainfall probability over the PRD megacity. Global warming tends to increase heavy rainfall probability (from 40 to 60mm/hr) by about 1.3 to 1.8 times, but suppresses the frequency of light rainfall. Urban development increases urban rainfall probability within the whole range of intensity, with frequency for very heavy rainfall (> 90mm/hr) almost doubled. Overall, forcing due to rapid urban development plays an important role for projecting rainfall characteristic over the highly urbanized coastal PRD megacity, with impacts that can be comparable to global warming in the near future.


2021 ◽  
Author(s):  
Milan Klöwer ◽  
Myles Allen ◽  
David Lee ◽  
Simon Proud ◽  
Leo Gallagher ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Volker Grewe ◽  
Arvind Gangoli Rao ◽  
Tomas Grönstedt ◽  
Carlos Xisto ◽  
Florian Linke ◽  
...  

AbstractAviation is an important contributor to the global economy, satisfying society’s mobility needs. It contributes to climate change through CO2 and non-CO2 effects, including contrail-cirrus and ozone formation. There is currently significant interest in policies, regulations and research aiming to reduce aviation’s climate impact. Here we model the effect of these measures on global warming and perform a bottom-up analysis of potential technical improvements, challenging the assumptions of the targets for the sector with a number of scenarios up to 2100. We show that although the emissions targets for aviation are in line with the overall goals of the Paris Agreement, there is a high likelihood that the climate impact of aviation will not meet these goals. Our assessment includes feasible technological advancements and the availability of sustainable aviation fuels. This conclusion is robust for several COVID-19 recovery scenarios, including changes in travel behaviour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sami Ghnimi ◽  
Amin Nikkhah ◽  
Jo Dewulf ◽  
Sam Van Haute

AbstractThe energy balance and life cycle assessment (LCA) of ohmic heating and appertization systems for processing of chopped tomatoes with juice (CTwJ) were evaluated. The data included in the study, such as processing conditions, energy consumption, and water use, were experimentally collected. The functional unit was considered to be 1 kg of packaged CTwJ. Six LCA impact assessment methodologies were evaluated for uncertainty analysis of selection of the impact assessment methodology. The energy requirement evaluation showed the highest energy consumption for appertization (156 kWh/t of product). The energy saving of the ohmic heating line compared to the appertization line is 102 kWh/t of the product (or 65% energy saving). The energy efficiencies of the appertization and ohmic heating lines are 25% and 77%, respectively. Regarding the environmental impact, CTwJ processing and packaging by appertization were higher than those of ohmic heating systems. In other words, CTwJ production by the ohmic heating system was more environmentally efficient. The tin production phase was the environmental hotspot in packaged CTwJ production by the appertization system; however, the agricultural phase of production was the hotspot in ohmic heating processing. The uncertainty analysis results indicated that the global warming potential for appertization of 1 kg of packaged CTwJ ranges from 4.13 to 4.44 kg CO2eq. In addition, the global warming potential of the ohmic heating system ranges from 2.50 to 2.54 kg CO2eq. This study highlights that ohmic heating presents a great alternative to conventional sterilization methods due to its low environmental impact and high energy efficiency.


mBio ◽  
2021 ◽  
Author(s):  
Arthi Ramachandran ◽  
Susan McLatchie ◽  
David A. Walsh

Global warming is profoundly influencing the Arctic Ocean. Rapid ice melt and increased freshwater input is increasing ocean stratification, driving shifts in nutrient availability and the primary production that supports marine food webs.


Export Citation Format

Share Document