A holistic design approach for 5th generation smart local energy systems: Project GreenSCIES

Energy ◽  
2021 ◽  
pp. 122885
Author(s):  
Akos Revesz ◽  
Chris Dunham ◽  
Phil Jones ◽  
Carole Bond ◽  
Russell Fenner ◽  
...  
Author(s):  
Robin Wardle ◽  
Neal Wade ◽  
Christopher Mullen ◽  
Mohammad Royapoor

2021 ◽  
Author(s):  
Samuel Robinson ◽  
Alona Armstrong

<p>Energy systems around the world are rapidly transitioning towards decentralised and digitalised systems as countries aim to decarbonise their economies. However, broader environmental effects of the upscaling of these smart local energy systems (SLES) beyond reducing carbon emissions remain unclear. Land-use change associated with increased deployment of renewables, new infrastructures required for energy distribution and storage, and resource extraction for emerging energy technologies may have significant environmental impacts, including consequences for ecosystems within and beyond energy system project localities. This has major implications for biodiversity, natural capital stocks and provision of ecosystem services, the importance of which are increasingly recognised in development policy at local to international scales. This study assessed current understanding of the broader environmental impacts and potential co-benefits of SLES through a global Rapid Evidence Assessment of peer-reviewed academic literature, with a critical evaluation and synthesis of existing knowledge of effects of SLES on biodiversity, natural capital and ecosystem services. There was a striking overall lack of evidence of the environmental impacts of SLES. The vast majority of studies identified considered only energy technology CO<sub>2</sub> emissions through simulation modelling; almost no studies made explicit reference to effects on ecosystems. This highlights an urgent need to improve whole system understanding of environmental impacts of SLES, crucial to avoid unintended ecosystem degradation as a result of climate change mitigation. This will also help to identify potential techno-ecological synergies and opportunities for improvement of degraded ecosystems alongside reaching decarbonisation goals.</p>


Energy ◽  
2004 ◽  
Vol 29 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Dietmar Lindenberger ◽  
Thomas Bruckner ◽  
Robbie Morrison ◽  
Helmuth-M. Groscurth ◽  
Reiner Kümmel
Keyword(s):  

2020 ◽  
Vol 15 (3) ◽  
pp. 183-190
Author(s):  
Kshitiz Khanal ◽  
Bivek Baral

As most nations have adopted the Sustainable Development agenda to achieve the 17 Sustainable Development Goals (SDGs) by 2030, it is vital that planning of energy systems at local, regional and national levels also align with the agenda in order to achieve the goals. This study explores the sustainability of primary energy resources of a rural community to meet growing demands of the community, in order to achieve SDGs for energy access Goal no. 7 (SDG7) at local level. Using a linear back-casting techno-economic energy access model that informs the expected change in energy demand in order to reach SDG7 targets, this study examined whether local energy resources would be enough to achieve the targets for Barpak VDC (named such at the time of data collection before Nepal’s administrative restructuring), and explored the possibility of importing electricity from national grid to attain SDG7 targets. By analyzing the outputs of the model for Barpak, we found that currently assessed local energy resources are insufficient to meet the energy access targets. Importing electricity from national grid, in addition to the mini-hydropower plant currently in operation at Barpak is needed to achieve the targets. Huge cost investment and timely expansion of transmission and distribution infrastructure is crucial. By 2030, total energy demand is expected to grow up to 50,000 Gigajoules per year. Electricity import from national grid grows steadily, reaching up to 45,000 Gigajoules in 2030. The social costs of energy will continue to be dominated by household sector till 2030, reaching up to 30 million Nepali Rupees per year in total. Use of wood as fuel, the only significant source of emission in the model is modeled to decrease linearly and stop by 2030, as required by SDGs. Emission of 17 Metric Tonnes of Carbon-dioxide and 4.5 million kg Methane equivalent is reduced to zero at 2030. This model serves as an innovative approach to integrate SDG targets to local and regional energy planning process, and can be adopted for energy systems and policy planning for various regions in Nepal.


Sign in / Sign up

Export Citation Format

Share Document