Solution of partial differential equations by a global radial basis function-based differential quadrature method

2004 ◽  
Vol 28 (10) ◽  
pp. 1217-1226 ◽  
Author(s):  
C Shu ◽  
H Ding ◽  
K.S Yeo
Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 270
Author(s):  
Cheng-Yu Ku ◽  
Jing-En Xiao ◽  
Chih-Yu Liu

In this article, a novel radial–based meshfree approach for solving nonhomogeneous partial differential equations is proposed. Stemming from the radial basis function collocation method, the novel meshfree approach is formulated by incorporating the radial polynomial as the basis function. The solution of the nonhomogeneous partial differential equation is therefore approximated by the discretization of the governing equation using the radial polynomial basis function. To avoid the singularity, the minimum order of the radial polynomial basis function must be greater than two for the second order partial differential equations. Since the radial polynomial basis function is a non–singular series function, accurate numerical solutions may be obtained by increasing the terms of the radial polynomial. In addition, the shape parameter in the radial basis function collocation method is no longer required in the proposed method. Several numerical implementations, including homogeneous and nonhomogeneous Laplace and modified Helmholtz equations, are conducted. The results illustrate that the proposed approach may obtain highly accurate solutions with the use of higher order radial polynomial terms. Finally, compared with the radial basis function collocation method, the proposed approach may produce more accurate solutions than the other.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1336
Author(s):  
Constantin Bota ◽  
Bogdan Căruntu ◽  
Dumitru Ţucu ◽  
Marioara Lăpădat ◽  
Mădălina Sofia Paşca

In this paper a new method called the least squares differential quadrature method (LSDQM) is introduced as a straightforward and efficient method to compute analytical approximate polynomial solutions for nonlinear partial differential equations with fractional time derivatives. LSDQM is a combination of the differential quadrature method and the least squares method and in this paper it is employed to find approximate solutions for a very general class of nonlinear partial differential equations, wherein the fractional derivatives are described in the Caputo sense. The paper contains a clear, step-by-step presentation of the method and a convergence theorem. In order to emphasize the accuracy of LSDQM we included two test problems previously solved by means of other, well-known methods, and observed that our solutions present not only a smaller error but also a much simpler expression. We also included a problem with no known exact solution and the solutions computed by LSDQM are in good agreement with previous ones.


Sign in / Sign up

Export Citation Format

Share Document