seepage analysis
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 48)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 567
Author(s):  
Young-Hak Lee ◽  
Jung-Hyun Ryu ◽  
Joon Heo ◽  
Jae-Woong Shim ◽  
Dal-Won Lee

In recent years, as the number of reservoir embankments constructed has increased, embankment failures due to cracks in aging conduits have also increased. In this study, a crack in a conduit was modeled based on the current conduit design model, and the risk of internal erosion was analyzed using a large-scale model test and three-dimensional deformation–seepage analysis. The results show that when cracks existed in the conduit, soil erosion and cavitation occurred near the crack area, which made the conduit extremely vulnerable to internal erosion. Herein, a model is proposed that can reduce internal erosion by applying a layer of sand and geotextiles on the upper part of the conduit located close to the downstream slope. In the proposed model, only partial erosion occurred inside the conduit, and no cavitation appeared near the crack in the conduit. The results suggest that internal erosion can be suppressed when the water pressure acting intensively on the crack in the conduit is dispersed by the drainage layer. To validate these results, the pore water pressure, seepage line, and hydraulic gradient were investigated to confirm the erosion phenomenon and reinforcement effect.


2021 ◽  
Author(s):  
Xu-zhi Liang ◽  
Yun-wei Meng ◽  
Guo-kai Gao ◽  
Wei-yong Gong ◽  
Guang-yan Qing

2021 ◽  
Vol 826 (1) ◽  
pp. 012026
Author(s):  
Janming Wu ◽  
Guo Li ◽  
Yaosheng Tan ◽  
Chunfeng Liu ◽  
Lei Pei ◽  
...  
Keyword(s):  
Arch Dam ◽  

2021 ◽  
Vol 7 (7) ◽  
pp. 1098-1111
Author(s):  
Muhammad Shoaib ◽  
Wang Yang ◽  
Yang Liang ◽  
Gohar Rehman

Landslides, a devastating hazard, continue to happen, affecting the lives of thousands of people each year. Fluctuation in the Reservoir Water Level (FRWL) is one of the leading features disturbing the slope stability in reservoir areas, drawdown is more crucial than the rise to the stability of landslide. Latest studies grounded on field investigation and monitoring data propose that landslides in reservoir areas are initiated not solely by one issue like precipitation or FRWL, however conjointly by their joint actions. Zhulinwan landslide in Chongqing, China, Three Gorges Reservoir (TGR) area was analyzed by field investigation and numerical modelling to evaluate the characteristics of the landslide. The changes in landslide stability and deformation under the effect of reservoir drawdown and rainfall is analyzed using GEOSLOPE Software. The seepage analysis is done using SEEP W Model, afterward deformation and stability analysis using SLOPE W and SIGMA W respectively. The analysis confirmed that the coupling effect of reservoir drawdown at 1.2 m/d and rainstorm of once in 50 years return period makes the landslide unstable. Moreover, deformation at the same condition is maximum 0.049 m. The findings may be used by local authorities to help make decisions about slope stabilization in the event of a confirmed significant rainfall event. Doi: 10.28991/cej-2021-03091713 Full Text: PDF


Author(s):  
Xiaojie Yang ◽  
Weiran Zhang ◽  
Dongjie Xue ◽  
Zhigang Tao ◽  
Sida Xi

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1674
Author(s):  
Hsin-Fu Yeh ◽  
Tsien-Ting Huang ◽  
Jhe-Wei Lee

Rainfall infiltration is the primary triggering factor of slope instability. The process of rainfall infiltration leads to changes in the water content and internal stress of the slope soil, thereby affecting slope stability. The soil water retention curve (SWRC) was used to describe the relationship between soil water content, matric suction, and the water retention characteristics of the soil. This characteristic is essential for estimating the properties of unsaturated soils, such as unsaturated hydraulic conductivity function and shear strength. Thus, SWRC is regarded as important information for depicting the properties of unsaturated soil. The SWRC is primarily affected by the soil pore size distribution (PSD) and has unimodal and bimodal features. The bimodal SWRC is suitable for soils with structural or dual-porous media. This model can describe the structure of micropores and macropores in the soil and allow the hydraulic behavior at different pore scales to be understood. Therefore, this model is more consistent with the properties of onsite soil. Few studies have explored the differences in the impact of unimodal and bimodal models on unsaturated slopes. This study aims to consider unimodal and bimodal SWRC to evaluate the impact of unsaturated slope stability under actual rainfall conditions. A conceptual model of the slope was built based on field data to simulate changes in the hydraulic behavior of the slope. The results of seepage analysis show that the bimodal model has a better water retention capacity than the unimodal model, and therefore, its water storage performance is better. Under the same saturated hydraulic conductivity function, the wetting front of the bimodal model moves down faster. This results in changes in the pressure head, water content, and internal stress of the soil. The results show that the water content and suction stress changes of the bimodal model are higher than those of the unimodal model due to the difference in water retention capacity. Based on the stability of the slope, calculated using the seepage analysis, the results indicate that the potential failure depth of the bimodal model is deeper than that of the unimodal model.


2021 ◽  
Vol 16 (4) ◽  
pp. 626-635
Author(s):  
Takatsugu Ozaki ◽  
Akihiko Wakai ◽  
Go Sato ◽  
Takashi Kimura ◽  
Takanari Yamasaki ◽  
...  

To fully and rapidly develop a real-time early warning judgment system for slope failure at the time of heavy rains including overseas, it is necessary to predict water movement in the soil at the time of rainfall. In addition, to apply the system to a place where insufficient geotechnical and geological data have been amassed, it is necessary to evaluate the risk of slope failure based on physical properties obtained from a simple soil test. Therefore, in this study, the authors set Gogoshima Island in Ehime Prefecture as a study site and evaluated the water movement over time in the soil during heavy rain using a simple prediction equation of rainfall seepage process. Soil properties were determined through simple in-situ and laboratory tests. As a result, it was found that the factor of safety for slope failure in the head and wall of a valley dissecting the hillside slope composed of granodiorite in which weathering has progressed can be planarly evaluated using the simple prediction equation.


Sign in / Sign up

Export Citation Format

Share Document