scholarly journals A Least Squares Differential Quadrature Method for a Class of Nonlinear Partial Differential Equations of Fractional Order

Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1336
Author(s):  
Constantin Bota ◽  
Bogdan Căruntu ◽  
Dumitru Ţucu ◽  
Marioara Lăpădat ◽  
Mădălina Sofia Paşca

In this paper a new method called the least squares differential quadrature method (LSDQM) is introduced as a straightforward and efficient method to compute analytical approximate polynomial solutions for nonlinear partial differential equations with fractional time derivatives. LSDQM is a combination of the differential quadrature method and the least squares method and in this paper it is employed to find approximate solutions for a very general class of nonlinear partial differential equations, wherein the fractional derivatives are described in the Caputo sense. The paper contains a clear, step-by-step presentation of the method and a convergence theorem. In order to emphasize the accuracy of LSDQM we included two test problems previously solved by means of other, well-known methods, and observed that our solutions present not only a smaller error but also a much simpler expression. We also included a problem with no known exact solution and the solutions computed by LSDQM are in good agreement with previous ones.

2018 ◽  
Vol 35 (6) ◽  
pp. 2349-2366 ◽  
Author(s):  
Umer Saeed ◽  
Mujeeb ur Rehman ◽  
Qamar Din

Purpose The purpose of this paper is to propose a method for solving nonlinear fractional partial differential equations on the semi-infinite domain and to get better and more accurate results. Design/methodology/approach The authors proposed a method by using the Chebyshev wavelets in conjunction with differential quadrature technique. The operational matrices for the method are derived, constructed and used for the solution of nonlinear fractional partial differential equations. Findings The operational matrices contain many zero entries, which lead to the high efficiency of the method and reasonable accuracy is achieved even with less number of grid points. The results are in good agreement with exact solutions and more accurate as compared to Haar wavelet method. Originality/value Many engineers can use the presented method for solving their nonlinear fractional models.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Alemu Senbeta Bekela ◽  
Melisew Tefera Belachew ◽  
Getinet Alemayehu Wole

Abstract Time-fractional nonlinear partial differential equations (TFNPDEs) with proportional delay are commonly used for modeling real-world phenomena like earthquake, volcanic eruption, and brain tumor dynamics. These problems are quite challenging, and the transcendental nature of the delay makes them even more difficult. Hence, the development of efficient numerical methods is open for research. In this paper, we use the concepts of Laplace-like transform and variational theory to develop a new numerical method for solving TFNPDEs with proportional delay. The stability and convergence of the method are analyzed in the Banach sense. The efficiency of the proposed method is demonstrated by solving some test problems. The numerical results show that the proposed method performs much better than some recently developed methods and enables us to obtain more accurate solutions.


2011 ◽  
Vol 10 (3) ◽  
pp. 509-576 ◽  
Author(s):  
M. J. Baines ◽  
M. E. Hubbard ◽  
P. K. Jimack

AbstractThis article describes a number of velocity-based moving mesh numerical methods for multidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.


Sign in / Sign up

Export Citation Format

Share Document