A smoothed finite element method for exterior Helmholtz equation in two dimensions

2017 ◽  
Vol 84 ◽  
pp. 237-252 ◽  
Author(s):  
Yingbin Chai ◽  
Zhixiong Gong ◽  
Wei Li ◽  
Tianyun Li ◽  
Qifan Zhang
2018 ◽  
Vol 15 (05) ◽  
pp. 1850029 ◽  
Author(s):  
Yingbin Chai ◽  
Zhixiong Gong ◽  
Wei Li ◽  
Tianyun Li ◽  
Qifan Zhang ◽  
...  

In this work, the smoothed finite element method using four-node quadrilateral elements (SFEM-Q4) is employed to resolve underwater acoustic radiation problems. The SFEM-Q4 can be regarded as a combination of the standard finite element method (FEM) and the gradient smoothing technique (GST) from the meshfree methods. In the SFEM-Q4, only the values of shape functions (not the derivatives) at the quadrature points are needed and the traditional requirement of coordinate transformation procedure is not necessary to implement the numerical integration. Consequently, no additional degrees of freedom are required as compared with the original FEM. In addition, the original “overly-stiff” FEM model for acoustic problems (governed by the Helmholtz equation) is properly softened due to the gradient smoothing operations implemented over the smoothing domains and the present SFEM-Q4 possesses a relatively appropriate stiffness of the continuous system. Therefore, the well-known numerical dispersion error for Helmholtz equation is decreased significantly and very accurate numerical solutions can be obtained by using relatively coarse meshes. In order to truncate the unbounded domains and employ the domain-based numerical method to tackle the acoustic radiation in unbounded domains, the Dirichlet-to-Neumann (DtN) map is used to ensure that there are no spurious reflections from the far field. The numerical results from several numerical examples demonstrate that the present SFEM-Q4 is quite effective to handle acoustic radiation problems and can produce more accurate numerical results than the standard FEM.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Haitao Wang ◽  
Xiangyang Zeng ◽  
Ye Lei

Wave-based methods for acoustic simulations within enclosures suffer the numerical dispersion and then usually have evident dispersion error for problems with high wave numbers. To improve the upper limit of calculating frequency for 3D problems, a hybrid smoothed finite element method (hybrid SFEM) is proposed in this paper. This method employs the smoothing technique to realize the reduction of the numerical dispersion. By constructing a type of mixed smoothing domain, the traditional node-based and face-based smoothing techniques are mixed in the hybrid SFEM to give a more accurate stiffness matrix, which is widely believed to be the ultimate cause for the numerical dispersion error. The numerical examples demonstrate that the hybrid SFEM has better accuracy than the standard FEM and traditional smoothed FEMs under the condition of the same basic elements. Moreover, the hybrid SFEM also has good performance on the computational efficiency. A convergence experiment shows that it costs less time than other comparison methods to achieve the same computational accuracy.


2016 ◽  
Vol 168 ◽  
pp. 16-29 ◽  
Author(s):  
Eric Li ◽  
Junning Chen ◽  
Zhongpu Zhang ◽  
Jianguang Fang ◽  
G.R. Liu ◽  
...  

2015 ◽  
Vol 07 (06) ◽  
pp. 1550085 ◽  
Author(s):  
Z. C. He ◽  
G. Y. Zhang ◽  
L. Deng ◽  
Eric Li ◽  
G. R. Liu

The node-based smoothed finite element method (NS-FEM) proposed recently has shown very good properties in solid mechanics, such as providing much better gradient solutions. In this paper, the topology optimization design of the continuum structures under static load is formulated on the basis of NS-FEM. As the node-based smoothing domain is the sub-unit of assembling stiffness matrix in the NS-FEM, the relative density of node-based smoothing domains serves as design variables. In this formulation, the compliance minimization is considered as an objective function, and the topology optimization model is developed using the solid isotropic material with penalization (SIMP) interpolation scheme. The topology optimization problem is then solved by the optimality criteria (OC) method. Finally, the feasibility and efficiency of the proposed method are illustrated with both 2D and 3D examples that are widely used in the topology optimization design.


Sign in / Sign up

Export Citation Format

Share Document