spectral finite element method
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7394
Author(s):  
Łukasz Doliński ◽  
Marek Krawczuk ◽  
Magdalena Palacz ◽  
Wiktor Waszkowiak ◽  
Arkadiusz Żak

Damage detection in structural components, especially in mechanical engineering, is an important element of engineering practice. There are many methods of damage detection, in which changes in various parameters caused by the presence of damage are analysed. Recently, methods based on the analysis of changes in dynamic parameters of structures, that is, frequencies or mode shapes of natural vibrations, as well as changes in propagating elastic waves, have been developed at the highest rate. Diagnostic methods based on the elastic wave propagation phenomenon are becoming more and more popular, therefore it is worth focusing on the improvement of the efficiency of these methods. Hence, a question arises about whether it is possible to shorten the required measurement time without affecting the sensitivity of the diagnostic method used. This paper discusses the results of research carried out by the authors in this regard both numerically and experimentally. The numerical analysis has been carried out by the use of the Time-domain Spectral Finite Element Method (TD-SFEM), whereas the experimental part has been based on the measurement performed by 1-D Laser Doppler Scanning Vibrometery (LDSV).


2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Sudarmaji Saroji ◽  
Budi Eka Nurcahya ◽  
Nivan Ramadhan Sugiantoro

<p>Numerical modeling of 2D seismic wave propagation using spectral finite element method to estimate the response of seismic waves passing through the poroelastic medium from a hydrocarbon reservoir has been carried out. A hybrid simple model of the elastic - poroelastic - elastic with a mesoscopic scale element size of about 50cm was created. Seismic waves which was in the form of the ricker function are generated on the first elastic medium, propagated into the poroelastic medium and then transmitted to the second elastic medium. Pororoelastic medium is bearing hydrocarbon fluid in the form of gas, oil or water. Vertical and horizontal component of velocity seismograms are recorded on all mediums. Seismograms which are recorded in the poroelastic and second elastic medium show the existence of slow P compressional waves following fast P compressional waves that do not appear on the seismogram of the first elastic medium. The slow P wave is generated when the fast P wave enters the interface of the elastic - poroelastic boundary, propagated in the poroelastic medium and is transmited to the second elastic medium. The curves of Vertical to horizontal spectrum ratio (VHSR) which are observed from seismograms recorded in the poroelastic and the second elastic medium show that the peak of VHSR values at low frequency correlated with the fluid of poroelastic reservoir. The highest VHSR value at the low frequency which is recorded on the seismogram is above the 2.5 Hz frequency for reservoirs containing gas and oil in the second elastic medium, while for the medium containing water is the highest VHSR value is below the 2.5 Hz frequency.</p>


Sign in / Sign up

Export Citation Format

Share Document