scholarly journals State of the practice in pavement structural design/analysis codes relevant to airfield pavement design

2019 ◽  
Vol 105 ◽  
pp. 12-24 ◽  
Author(s):  
Ernie Heymsfield ◽  
Jeb S. Tingle
2015 ◽  
Vol 16 (1) ◽  
pp. 51-68
Author(s):  
Kazimierz Flaga ◽  
Kazimierz Furtak

Abstract The aim of the article [1] was to discuss the application of steel-concrete composite structures in bridge engineering in the aspect of structural design, analysis and execution. It was pointed out that the concept of steel-concrete structural composition is far from exhausted and new solutions interesting from the engineering, scientific and aesthetic points of view of are constantly emerging. These latest trends are presented against the background of the solutions executed in Poland and abroad. Particular attention is focused on structures of double composition and steel-concrete structures. Concrete filled steel tubular (CFST) structures are highlighted.


Author(s):  
Donald V. Rosato ◽  
David P. Di Mattia ◽  
Dominick V. Rosato

Author(s):  
Ramon Bonaquist ◽  
Donald W. Christensen

A dynamic modulus master curve for asphalt concrete is a critical input for flexible pavement design in the mechanistic–empirical pavement design guide developed in NCHRP Project 1–37A. The recommended testing to develop the modulus master curve is presented in AASHTO Provisional Standard TP62–03, Standard Method of Test for Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures. It includes testing at least two replicate specimens at five temperatures between 14°F and 130°F (–10°C and 54.4°C) and six loading rates between 0.1 and 25 Hz. The master curve and shift factors are then developed from this database of 60 measured moduli using numerical optimization. The testing requires substantial effort, and there is much overlap in the measured data, which is not needed when numerical methods are used to perform the time–temperature shifting for the master curve. This paper presents an alternative to the testing sequence specified in AASHTO TP62–03. It requires testing at only three temperatures between 40°F and 115°F (4.4°C and 46.1°C) and four rates of loading between 0.01 and 10 Hz. An analysis of data collected using the two approaches shows that comparable master curves are obtained. This alternative testing sequence can be used in conjunction with the simple performance test system developed in NCHRP Project 9–29 to develop master curves for structural design.


2021 ◽  
Vol 16 (1) ◽  
pp. JFST0009-JFST0009
Author(s):  
Shugo DATE ◽  
Yoshiaki ABE ◽  
Takeki YAMAMOTO ◽  
Tomonaga OKABE

Sign in / Sign up

Export Citation Format

Share Document