master curves
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 41)

H-INDEX

23
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Miriam Cappello ◽  
Sara Filippi ◽  
Yvong Hung ◽  
Massimo Losa ◽  
Giovanni Polacco

The oxidative aging of bituminous binders affects the performance and durability of pavements. In the case of polymer-modified binders, aging involves both bitumen and polymers and has a strong impact on the whole architecture of the material. Rheology may help in understanding these structural changes, and interesting information may be obtained by analysing the evolution of apparent molecular weight distributions. This was demonstrated with a bituminous binder modified with a poly(styrene-butadiene) block copolymer and subjected to prolonged artificial aging. Isothermal frequency sweep tests were used to construct master curves of the phase angle and magnitude of the complex modulus. The master curves were then used to calculate relaxation spectra and apparent molecular weight distributions of the binders, as well as simulated temperature sweep tests. A comparison of the behaviour of the base and modified bitumen highlighted the role of the polymer in aging. Polymer degradation significantly damages the elastomeric network, yet the residual polymer chains still interact with the bitumen molecules and reduce their oxidative aging. The apparent molecular weight distributions were deconvoluted to create an aging index specifically developed for polymer-modified bitumen.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7024
Author(s):  
Zdzisław M. Pawlak ◽  
Arkadiusz Denisiewicz

The paper presents an analysis of the rheological properties of a selected viscoelastic material, which is dedicated to the reduction of vibrations in structures subjected to dynamic loads. A four-parameter, fractional Zener model was used to describe the dynamic behavior of the tested material. The model parameters were identified on the basis of laboratory tests performed at different temperatures and for different vibration frequencies. After proving that the material is thermoreologically simple, the so-called master curves were created using a horizontal shift factor. The Williams–Landel–Ferry formula was applied to create graphs of the master curves, the constants of which were determined for the selected temperature. The resulting storage and loss module functions spanned several decades in the frequency domain. The parameters of the fractional Zener model were identified by fitting the entire range of the master curves with the gradientless method (i.e., Particle Swarm Optimization), consisting in searching for the best-fitted solution in a set of feasible solutions. The parametric analysis of the obtained solutions allowed for the formulation of conclusions regarding the effectiveness of the applied rheological model.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Madhu Kasturi ◽  
Haotian Wu ◽  
Jeff Suhling ◽  
Edward Davis

Abstract Automotive underhood electronics may be exposed to high temperature in the neighborhood of 100°C–200°C. Property evolution may impact reliability and accuracy of predictive models to assure desired use life. In this paper, evolution of properties of two underfill material properties are studied using DMA (Dynamic Mechanical Analyzer). The underfills are exposed to three different operational temperatures in the range of 100°C to 140°C for the measurements. The dynamic mechanical properties such as storage modulus (E′), loss modulus (E″), tangent delta (tan δ), and respective glass transition temperatures (Tg) are studied using DMA. Study of viscoelastic behavior of underfills is achieved by performing TTS (time-temperature superposition) experiments at 7 discrete frequencies 0.1, 0.21, 0.46, 1, 2.15, 4.64, and 10 Hz using DMA in three-point bend mode. From the selected reference temperatures, the master curves were constructed for storage moduli, loss moduli and tan delta as a function of frequency using TTS results. Using the WLF (Williams-Landel-Ferry) equation, the shift factors as a function of temperature were determined along the frequency axis. The relaxation modulus as a function of temperature and time can be obtained using the master curves of storage and loss moduli. A simple and detailed procedure has been established to find the Prony series constants.


Author(s):  
Gerald Pilz ◽  
Stefan Wurzer ◽  
Matthias Morak ◽  
Gerald Pinter

AbstractThermoplastic materials are increasingly used in demanding structural applications under, in some cases, long-term static loading over several decades. In this regard, the stepped isothermal method (SIM) with creep testing at stepwise increased temperature levels in combination with time-temperature superposition (TTSP) provides a very time efficient procedure for long-term creep characterization. In the present study, the creep behavior of an injection molded high-density polyethylene material (HDPE) was investigated by SIM in the thermally untreated state as well as after annealing.Due to experimental issues regarding the heating behavior of the specimens and non-linear viscoelastic behavior, particularly at elevated temperatures, bi-directional curve shifting was required in order to generate meaningful master curves for creep compliance. In a first step, an Arrhenius equation was used for the horizontal curve shifting, based on activation energies, determined in additional multi-frequency dynamic mechanical analysis (DMA). Continuous master curves were then obtained by empirical vertical shifting of the individual creep curve segments for the different temperature levels. In general, good agreement was observed between the resulting SIM master curves and the corresponding conventionally measured creep compliance curves at least for a time range up to 300 hours. Furthermore, significant differences in the creep tendency of the annealed material state compared to the thermally untreated condition revealed the distinct influence of the thermal history on the resulting creep behavior.


2021 ◽  
Vol 11 (16) ◽  
pp. 7483
Author(s):  
Miriam Cappello ◽  
Giovanni Polacco ◽  
Julien Crépier ◽  
Yvong Hung ◽  
Sara Filippi

Rheology is the most widely used technique to evaluate the performance and aging of bituminous binders. Since there are many available rheological tests, there is also a wide range of aging indexes and it is not easy to choose the most appropriate one, because a single value may hardly be adequate for different properties or operating conditions. In order to generalize the usefulness of an index, a good starting point is deriving it from a set of data, such as the master curves of linear viscoelastic functions. Then, the problem is the quantification of aging in a single numerical value from continuous curves, covering a wide range of frequencies/temperatures. In this work, a summary of the aging indexes derived from the master curves is reported and discussed. The indexes are applied to a bituminous binder either with or without the addition of an organo-modified layered silicate. The apparent molecular weight distributions and relaxation spectra were also calculated from the master curves and used to characterize the effect of aging on the binder properties and structure. In this way, an interesting parallelism was observed between the SARA fractions and the populations derived from a deconvolution analysis of the apparent molecular weight distributions.


2021 ◽  
Vol 11 (14) ◽  
pp. 6521
Author(s):  
Abdur Rahim ◽  
Abdalrhman Milad ◽  
Nur Izzi Md Yusoff ◽  
Gordon Airey ◽  
Nick Thom

The aggregate in an asphalt mixture is coated with mastic consisting of bitumen (dilute phase) and filler (particulates phase). The interaction of bitumen and filler and packing of filler plays an important role in the properties of mastics. The micromechanics models from composite rheology can be used to predict the stiffening effect of a suspension. In this research, the stiffening effect of fillers was investigated based on the rheology of mastic. The frequency sweep tests in a dynamic shear rheometer at different temperatures were performed within a linear viscoelastic range to construct the master curves. The volume fractions were expressed as compositional volumes of filler in mastic. The particle shape and surface texture are determined through microscopy. We used six micromechanics-based models to predict the stiffening potential of fillers in mastics. The models include Maron–Pierce, Lewis Nielsen, Mooney, Krieger–Dougherty, Chong, Robinson, and Hashin Models. The results show that the same volume content of filler has a different effective volume. The fillers increase the stiffening effect of the composite, especially at high temperatures. The behaviour of fillers with similar effective volume and packing is identical. The filler type affects the stiffening of mastics. Micromechanics modelling results show that most models show an accurate stiffening effect at lower concentrations with the exception of the Chong Model. The Maron–Pierce Model under-estimates the stiffening potential for granite mastic at higher concentrations beyond the 30% filler content fraction. The value of maximum packing fraction (ϕm) and Einstien coefficient (KE) in the Mooney model are significantly different from other models for limestone and granite, respectively. The line of equality graph shows good agreement of measured and predicted stiffness. It is difficult to precisely model the mastic data with any single model due to the presence of complex stiffening effects beyond volume filling.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2294
Author(s):  
Silvia Lajewski ◽  
Annika Mauch ◽  
Kalman Geiger ◽  
Christian Bonten

Presently, almost every industry uses conventional plastics. Its production from petroleum and extensive plastic pollution cause environmental problems. More sustainable alternatives to plastics include bioplastics such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which is produced by bacteria and is biodegradable even in seawater. High temperature sensitivity as well as massive thermal degradation cause difficulties during the processing of PHBV. The aim of this work is to create a detailed rheological characterization and master curves to gain deeper knowledge about the material and its processing parameters. The rheological characterization was performed with frequency sweeps in the range of 0.1 rad/s to 628 rad/s and time sweeps over 300 s. Creating master curves at the reference temperature of 180 °C with the software IRIS delivers Carreau and Arrhenius parameters. These parameters allow for a calculation of the master curves for all other temperatures by means of the temperature shift factor. Moreover, the rheological measurements reveal a minimum rheological measurement temperature of 178 °C and a surprisingly high activation energy of 241.8 kJ/mol.


Author(s):  
A Sakhnevych ◽  
A Genovese ◽  
A Maiorano ◽  
F Timpone ◽  
F Farroni

Background The ultrasound technique, usually based on the transmission mode, is capable of providing the viscoelastic properties of polymers. Further techniques involving pulse-echo methods were also described in literature, but they still exhibit inaccuracies in the evaluation of the acoustic properties. Objective The manuscript focuses on an innovative approach for the characterization of the viscoelastic behavior of polymers employing the ultrasound methodology. The proposed procedure is based on the pulse-echo method in order to overcome possible inaccuracies in acoustic properties evaluation and in issues related to transmitter mode applications. Methods Starting from the pulse-echo method adopted for the acquisition, a novel formulation for data processing has been developed and described, allowing to determine the wave attenuation coefficient, in comparison to the commonly employed procedures involving ultrasound in polymers characterization, based on transmitter mode inspections. To carry out the study, a specifically designed ultrasound bench has been set up and three different polymers have been tested in the temperature range of interest. Results According to the proposed methodology, the loss factor towards the temperature is determined starting from the data acquired considering the identified attenuation coefficient and the measured sound velocities. The trustworthiness of the novel procedure has been proved comparing the obtained viscoelastic loss factor quantities to the reference master curves obtained by the standard Dynamic Mechanical Analysis characterizations carried out on the same polymer specimens. Conclusions A novel methodology involving ultrasound technology aiming to evaluate the viscoelasticity of the polymers using non-destructive approach has been developed. The results obtained are agreement with the standard viscoelastic master curves determined through the DMA.


Sign in / Sign up

Export Citation Format

Share Document