A probabilistic fracture mechanics model including 3D ductile tearing of bi-axially loaded pipes with surface cracks

2008 ◽  
Vol 75 (1) ◽  
pp. 76-96 ◽  
Author(s):  
Andreas Sandvik ◽  
Erling Østby ◽  
Christian Thaulow
2001 ◽  
Vol 17 (2) ◽  
pp. 61-68
Author(s):  
W. F. Wu ◽  
C. C. Ni ◽  
H. Y. Liou

ABSTRACTFatigue crack propagation data of a batch of AISI 4340 steel specimens are released in the present paper. The statistical nature of the data is specially emphasized, and a probabilistic fracture mechanics model is introduced to analyze the data. The stochastic differential equation associated with the model is then solved. The solution gives us the crack exceedance probability as well as the probability distribution of the random time to reach a specified crack size. These quantities are useful in the reliability assessment of structures made of the tested material. Comparing the analytical result with the experimental result, it is found that the proposed probabilistic fracture mechanics model can reasonably explain the experimental data. For those data that cannot be fitted well by the proposed model, methods of improvement are proposed in the present paper as well.


Author(s):  
Guobiao Ji ◽  
Liang Cheng ◽  
Shaohua Fei ◽  
Jiangxiong Li ◽  
Yinglin Ke

Through-thickness reinforcement is a promising solution to the problem of delamination susceptibility in laminated composites. Modeling Z-pin–prepreg interaction is essential for accurate robotics-assisted Z-pin insertion. In this paper, a novel Z-pin insertion force model combining the classical cohesive finite element (FE) method with a dynamic analytical fracture mechanics model is proposed. The velocity-dependent cohesive elements, in which the fracture toughness is provided by the analytical model, are implemented in Z-pin insertion FE model to predict the crack initiation and propagation. Then Z-pin insertion experiments are performed on prepreg sample with metallic Z-pins at different velocities to identify the analytical model parameters and validate the simulation predictions offered by the model. Dynamics of Z-pin interaction with inhomogeneous prepreg is described and the effects of insertion velocity on prepreg contact force are studied. Results show that the force model agrees well with experiments and the fracture toughness rises with the increasing Z-pin insertion velocity.


Sign in / Sign up

Export Citation Format

Share Document