metallic component
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 1)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 614
Author(s):  
Haowen Wang ◽  
Jiangbo Huang ◽  
Longhuan Liu ◽  
Shanqiang Qin ◽  
Zhihong Fu

The pulsed eddy current (PEC) inspection is considered a versatile non-destructive evaluation technique, and it is widely used in metal thickness quantifications for structural health monitoring and target recognition. However, for non-ferromagnetic conductors covered with non-uniform thick insulating layers, there are still deficiencies in the current schemes. The main purpose of this study is to find an effective feature, to measure wall thinning under the large lift-off variations, and further expand application of the PEC technology. Therefore, a novel method named the dynamic apparent time constant (D-ATC) is proposed based on the coil-coupling model. It associates the dynamic behavior of the induced eddy current with the geometric dimensions of the non-ferromagnetic metallic component by the time and amplitude features of the D-ATC curve. Numeral calculations and experiments show that the time signature is immune to large lift-off variations.


Microstructure and corrosion behavior of nanocrystalline SUS304 by dry ice shot peening has been investigated in detail in term of phase transformation. SUS304 as metastable austenitic stainless has excellent corrosion resistance and induced martensite by shot peening process. However, the SUS304 has quite low strength which is difficult to wear as metallic component. The dry ice shot peening process was carried out on SUS304 surface for one and three hours. The microstructure was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) equipped with electron back-scattered diffraction (EBSD). The phase transformation was analyzed by X-ray diffraction (XRD). The corrosion testing was carried out in 3.5% NaCl solution. The result indicated that the grain size of SUS304 surface was finer by deformation due to dry ice shot peened process. The hardness was improved properly by the increasing the shot peened time, and the corrosion resistance was increased. The XRD results showed that three hours shot peening process induced martensite phase of SUS304 by 15 m thickness. It can be summarized that the dry ice shot peening can be induced phase transformation due to high deformation on the SUS304 surface


2021 ◽  
pp. 107110072110600
Author(s):  
Oliver J. Gagne ◽  
Jonathan Day ◽  
Jaeyoung Kim ◽  
Kristin Caolo ◽  
Martin J. O’Malley ◽  
...  

Background: The use of total ankle arthroplasty (TAA) in the treatment of ankle arthritis has grown substantially as advancements are made in design and surgical technique. Among the criteria guiding the choice between arthroplasty and arthrodesis, the long-term survival and postoperative outcomes are of crucial importance. Although outcomes of the INBONE I have been published, there is limited midterm survival data for the INBONE II. The purpose of this study was to determine the radiographic and patient-reported outcomes, and survivorship of this prosthesis in patients with a minimum 5-year follow-up. Methods: We retrospectively identified 51 ankles (46 patients) from 2010 to 2015 who underwent TAA with the INBONE II prosthesis at our institution. Of these, 44 cases had minimum clinical follow-up of 5 years (mean, 6.4; range 5-9). Median age was 66 years (range 42-81) and median BMI was 27.5 (range 20.1-33.0). A chart review was performed to record the incidence of revision and reoperation. Preoperative and postoperative radiographs were analyzed to assess the coronal tibiotalar alignment (TTA), the talar inclination angle, and the presence of periprosthetic lucencies and cyst formation. Preoperative and minimum 5-year postoperative Foot and Ankle Outcome Score (FAOS) subscales were compared. Survivorship was determined by incidence of revision, defined as removal of a metallic component. Results: The survivorship at 5 years was 98% and the rate of reoperation was 7.8% (n = 4); 2 patients underwent irrigation and debridement for infection, 1 patient underwent a medializing calcaneal osteotomy, and 1 patient underwent open gutter debridement, 1 patient underwent a revision of a subsided talar component at 3.2 years after index surgery. Average postoperative TTA was 88.6 degrees, with 42 rated as neutral (85-95 degrees), 2 varus (<85 degrees), and no valgus (>95 degrees) ankles. At final follow-up, asymptomatic periprosthetic cysts were observed in 8 patients. All FAOS domain scores improved between preoperative and final follow-up. Conclusion: At midterm follow-up, we observed significant improvement in radiographic alignment and patient-reported outcome scores for the INBONE II total ankle prosthesis. In addition, this cohort has had a relatively low reoperation rate and high survivorship. Level of Evidence: Level IV, case series.


Author(s):  
Bibin Jose ◽  
Manikandan Manoharan ◽  
Arivazhagan Natarajan

Residual stresses are inherent stresses that exist in engineering components even though no external load is applied. They are caused by the non-uniform volumetric shift of the metallic component during manufacturing processes. Welding is a key manufacturing technique that has a substantial impact on the economy since it is required for the production of a diverse variety of products used in the engineering sector. The residual stress primarily affects the stability, durability and performance of the welded joints. Hence its determination is of utmost importance. X-ray diffraction (XRD) is the most commonly used method for residual stress analysis. There are mainly two approaches for measuring residual stress using XRD; one is the sin2ψ method and the other is the cosα method. The residual stress measurements using the cosα method are handy, quick and convenient compared to the sin2ψ method. This method is well suited for welded joints, as it provides flexibility for testing immediately after the welding operation. Apart from residual stress measurements, the cosα method also gives valuable insights in the form of Debye-Scherrer (DS) rings and full width at half maximum. The present study focuses on the development of a novel technique that not only enables residual stress measurement but also provides a quantitative estimation of hardness and qualitative estimation of grain size without performing metallurgical or mechanical characterization. The material used for the present study is an arc-welded joint of MDN 250 grade maraging steel. The residual stress results show a compressive profile throughout the weldment, with a maximum value of compressive residual stress of 428 MPa at the fusion zone.


2021 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
Nelson W. Pech-May ◽  
Mathias Ziegler

In this work, we introduce a new algorithm for effectual crack detection using flying line laser thermography, based on the well-known Canny approach. The algorithm transforms the input thermographic sequence into an edge map. Experimental measurements are performed on a metallic component that contains surface breaking cracks due to industrial use. The specimen is tested using flying line thermography at different scanning speeds and laser input powers. Results obtained with the proposed algorithm are additionally compared with a previously established algorithm for flying spot thermography. The proposed Canny-based algorithm can be used in automated systems for thermographic non-destructive testing.


Author(s):  
Yetao Lyu ◽  
Zi Yang ◽  
Hao Liang ◽  
Beini Zhang ◽  
Ming Ge ◽  
...  

Fatigue fracture is one of the most common metallic component failure cases in manufacturing industries. The observation on fractography can provide the direct evidence for failure analysis. In this study, an image segmentation method based on Fully Convolutional Networks (FCNs) was proposed to figure out the boundary between fatigue crack propagation and fast fracture regions from optical microscope (OM) fractography images. Furthermore, novel morphing-based data augmentation method was adopted to enable few-shot learning of sample images. The proposed framework can successfully segment two categories, namely the crack propagation and fast fracture regions, thus differentiating the boundary of two regions in one image. The artificial intelligence (AI) assisted fatigue analysis architecture can complete the failure analysis procedure in 0.5 second and prove the feasibility of fatigue failure analysis. The segmentation accuracy of developed network achieves 95.4% for the fatigue crack propagation region, as well as 97.2% for the fast fracture region, which possesses comparable accuracy to the segmentation results using Mask R-CNN Regional Convolutional Neural Network (Mask R-CNN), one state-of-the-art deep learning networks.


Author(s):  
Guru Prakash Sahu ◽  
Nishanth Raja ◽  
Krishnan Balasubramaniam

Abstract Surface temperature mapping is crucial for the monitoring and control of an object of interest, such as furnace, reactor pipes carrying hot fluids, or a component under a temperature dependant process. While the use of waveguides for temperature measurement is well documented in literature, the attachment of the waveguide to a metallic component poses challenges. These include the relationship between the local waveguide temperature and that of the metal component; and wave leakage into the component. In this paper, the authors study the propagation of Shear Horizontal (SH) guided wave in a strip waveguide and its interaction with the notch embodiments in the waveguide. The effects of the type of notch and its depth on the SH mode characteristics are investigated through simulation studies. The mode of attachment of the waveguide to the metal component is by means a slot made in the component. The area of contact between the waveguide and metal component is optimized such that there is minimum wave leakage into the bulk material. Based on the simulation results, a waveguide strip is fabricated and used to monitor the local surface temperature of a test metal component. The waveguide is calibrated by correlating the time of flight shift in the waveforms against reference temperature values. Thereafter, the instantaneous temperature of the metal component is determined from the calibration equations. A set of experimental trials are performed to check for repeatability. The experiments are conducted in near steady-state conditions for better accuracy in the measurements.


2021 ◽  
Author(s):  
Francesco Grazzi ◽  
Carlo Cialdai ◽  
Marco Manetti ◽  
Mirko Massi ◽  
Maria Pia Morigi ◽  
...  

AbstractIn this paper, we have studied an additively manufactured metallic component, intended for ultra-high vacuum application, the exit-snout of the MACHINA transportable proton accelerator beam-line. Metal additive manufacturing components can exhibit heterogeneous and anisotropic microstructures. Two non-destructive imaging techniques, X-ray computed tomography and Neutron Tomography, were employed to examine its microstructure. They unveiled the presence of porosity and channels, the size and composition of grains and intergranular precipitates, and the general behavior of the spatial distribution of the solidification lines. While X-ray computed tomography evidenced qualitative details about the surface roughness and internal defects, neutron tomography showed excellent ability in imaging the spatial density distribution within the component. The anisotropy of the density was attributed to the material building orientation during the 3D printing process. Density variations suggest the possibility of defect pathways, which could affect high vacuum performances. In addition, these results highlight the importance of considering building orientation in the design for additive manufacturing for UHV applications. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document