A mode III Dugdale crack interacting with a non-elliptical inhomogeneity with internal uniform stresses

2019 ◽  
Vol 216 ◽  
pp. 106495
Author(s):  
Xu Wang ◽  
Peter Schiavone
Author(s):  
Xu Wang ◽  
Liang Chen ◽  
Peter Schiavone

Using conformal mapping techniques and the theory of Cauchy singular integral equations, we prove that it is possible to maintain a uniform internal stress field inside a non-elliptical elastic inhomogeneity embedded in an infinite matrix subjected to uniform remote stress despite the fact that the inhomogeneity interacts with a finite mode III crack. The crack can be modelled either as a Griffith crack or as a Zener–Stroh crack. Our analysis further indicates that the existence of the crack plays a key role in influencing the shape of the corresponding inhomogeneity but not the internal uniform stress field inside the inhomogeneity. Numerical examples are presented to demonstrate the solution.


2016 ◽  
Vol 22 (3) ◽  
pp. 259-282 ◽  
Author(s):  
András Szekrényes

The second-order laminated plate theory is utilized in this work to analyze orthotropic composite plates with asymmetric delamination. First, a displacement field satisfying the system of exact kinematic conditions is presented by developing a double-plate system in the uncracked plate portion. The basic equations of linear elasticity and Hamilton’s principle are utilized to derive the system of equilibrium and governing equations. As an example, a delaminated simply supported plate is analyzed using Lévy plate formulation and the state-space model by varying the position of the delamination along the plate thickness. The displacements, strains, stresses and the J-integral are calculated by the plate theory solution and compared with those by linear finite-element calculations. The comparison of the numerical and analytical results shows that the second-order plate theory captures very well the mechanical fields. However, if the delamination is separated by only a relatively thin layer from the plate boundary surface, then the second-order plate theory approximates badly the stress resultants and so the mode-II and mode-III J-integrals and thus leads to erroneous results.


Sign in / Sign up

Export Citation Format

Share Document