Wind tunnel and full-scale study of wind effects on China’s tallest building

2006 ◽  
Vol 28 (12) ◽  
pp. 1745-1758 ◽  
Author(s):  
Q.S. Li ◽  
J.Y. Fu ◽  
Y.Q. Xiao ◽  
Z.N. Li ◽  
Z.H. Ni ◽  
...  
Keyword(s):  
2016 ◽  
Vol 20 (6) ◽  
pp. 843-864 ◽  
Author(s):  
XX Cheng ◽  
L Zhao ◽  
YJ Ge ◽  
R Dong ◽  
C Demartino

Adding vertical ribs is recognized as a useful practice for reducing wind effects on cooling towers. However, ribs are rarely used on cooling towers in China since Chinese Codes are insufficient to support the design of rough-walled cooling towers, and an “understanding” hampers the use of ribs, which thinks that increased surface roughness has limited effects on the maximum internal forces that control the structural design. To this end, wind tunnel model tests in both uniform flow field with negligible free-stream turbulence and atmospheric boundary layer (ABL) turbulent flow field are carried out in this article to meticulously study and quantify the surface roughness effects on both static and dynamic wind loads for the purpose of improving Chinese Codes first. Subsequently, a further step is taken to obtain wind effects on a full-scale large cooling tower at a high Re, which are employed to validate the results obtained in the wind tunnel. Finally, the veracity of the model test results is discussed by investigating the Reynolds number (Re) effects on them. It has been proved that the model test results for atmospheric boundary layer flow field are all obtained in the range of Re-independence and the conclusions drawn from model tests and full-scale measurements basically agree, so most model test results presented in this article can be directly applied to the full-scale condition without corrections.


2016 ◽  
Vol 155 ◽  
pp. 159-173 ◽  
Author(s):  
Bo Chen ◽  
Teng Wu ◽  
Yilong Yang ◽  
Qingshan Yang ◽  
Qingxiang Li ◽  
...  

2021 ◽  
Author(s):  
Thomas G. Ivanco ◽  
Donald F. Keller ◽  
Jennifer L. Pinkerton

2021 ◽  
Vol 11 (4) ◽  
pp. 1642
Author(s):  
Yuxiang Zhang ◽  
Philip Cardiff ◽  
Jennifer Keenahan

Engineers, architects, planners and designers must carefully consider the effects of wind in their work. Due to their slender and flexible nature, long-span bridges can often experience vibrations due to the wind, and so the careful analysis of wind effects is paramount. Traditionally, wind tunnel tests have been the preferred method of conducting bridge wind analysis. In recent times, owing to improved computational power, computational fluid dynamics simulations are coming to the fore as viable means of analysing wind effects on bridges. The focus of this paper is on long-span cable-supported bridges. Wind issues in long-span cable-supported bridges can include flutter, vortex-induced vibrations and rain–wind-induced vibrations. This paper presents a state-of-the-art review of research on the use of wind tunnel tests and computational fluid dynamics modelling of these wind issues on long-span bridges.


2021 ◽  
Vol 235 ◽  
pp. 112101
Author(s):  
Johnny Estephan ◽  
Changda Feng ◽  
Arindam Gan Chowdhury ◽  
Mauricio Chavez ◽  
Appupillai Baskaran ◽  
...  

2008 ◽  
Vol 134 (12) ◽  
pp. 1887-1890 ◽  
Author(s):  
W. P. Fritz ◽  
B. Bienkiewicz ◽  
B. Cui ◽  
O. Flamand ◽  
T. C. Ho ◽  
...  

1966 ◽  
Vol 70 (667) ◽  
pp. 724-725 ◽  
Author(s):  
D. J. Cockrell ◽  
B. E. Lee

The production of required velocity profiles in a duct or wind tunnel is a necessary part of much research aimed at understanding fluid behaviour. Perhaps the most obvious application is the simulation of wind gradients for the study of wind effects on structures, but equally important is the study of diffuser and duct behaviour when subjected to a variety of known and convenient velocity profiles. Furthermore, the effects of the variation in turbulence characteristics within a range of identical velocity profiles produced by different methods are not clearly understood.


Sign in / Sign up

Export Citation Format

Share Document