Second-order analysis and design of angle trusses Part I: Elastic analysis and design

2008 ◽  
Vol 30 (3) ◽  
pp. 616-625 ◽  
Author(s):  
S.L. Chan ◽  
S.H. Cho
2003 ◽  
Vol 03 (04) ◽  
pp. 443-460 ◽  
Author(s):  
S. L. CHAN ◽  
A. Y. T. CHU ◽  
F. G. ALBERMANI

A robust computer procedure for the reliable design of scaffolding systems is proposed. The design of scaffolding is not detailed in design codes and considered by many researchers and engineers as intractable. The proposed method is based on the classical stability function, which performs excellently in highly nonlinear problems. The method is employed to predict the ultimate design load capacities of four tested 3-storey steel scaffolding units, and for the design of a 30 m×20 m×1.3 m 3-dimensional scaffolding system. As the approach is based on the rigorous second-order analysis allowing for the P-δ and P-Δ effects and for notional disturbance forces, no assumption of effective length is required. It is superior to the conventional second-order analysis of plotting only the bending moment diagram with allowance for P-Δ effect since it considers both P-Δ and P-δ effects such that section capacity check is adequate for strength and stability checking. The proposed method can be applied to large deflection and stability analysis and design of practical scaffolding systems in place of the conventional and unreliable effective length method which carries the disadvantages of uncertain assumption of effective length factor (L e /L).


Author(s):  
Prof. G. C. Jawalkar

Abstract: Slender member is subjected to axial load and biaxial bending moment and fails due to buckling. This buckling is caused due to slenderness effect also known as ‘P∆’ effect. This buckling gives rise to excessive bending moment occurring at a point of maximum deflection. This additional bending moment is considered in second order analysis. The objective of the research reported in this paper is to formulate bending moment equation by using beam column theory and to study the behaviour of solid circular section and hollow circular section of bridge pier. The optimization in area of cross section is done by providing a combination of solid and hollow circular section in place of a solid circular section of pier within permissible limits. A comparative study on behaviour for all three conditions is been carried out. Keywords: slender column, buckling, ‘P∆’ effect, beam-column, second order analysis, bridge pier.


2021 ◽  
Vol 9 (12) ◽  
pp. 431-440
Author(s):  
Prof. G.C. Jawalkar

Abstract: Slender member is subjected to axial load and biaxial bending moment and fails due to buckling. This buckling is caused due to slenderness effect also known as ‘P∆’ effect. This buckling gives rise to excessive bending moment occurring at a point of maximum deflection. This additional bending moment is considered in second order analysis. The objective of the research reported in this paper is to formulate bending moment equation by using beam column theory and to study the behaviour of solid circular section and hollow circular section of bridge pier. The optimization in area of cross section is done by providing a combination of solid and hollow circular section in place of a solid circular section of pier within permissible limits. A comparative study on behaviour for all three conditions is been carried out. Keywords: slender column, buckling, ‘P∆’ effect, beam-column, second order analysis, bridge pier.


2001 ◽  
Vol 28 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Lei Xu

This paper presents an analysis method in which both the nonlinear rotational behaviour of beam-to-column connections and second-order (P-Δ and P-δ) effects of beam-column members are explicitly taken into account. By adopting the concept of an end-fixity factor, the proposed method is comprehensive regardless of the end rotational conditions of beam-column members and applies to frames with any combination of pinned, semirigid and rigid beam-to-column connections. In addition, the end-fixity factor simplifies the analysis procedure for semirigid frames. More importantly, the end-fixity factor may be valuable to the design of such structures because it provides a physical interpretation of the extent of rigidity available in a connection. Thus, it provides a convenient way for designers to compare the structural responses of a semirigid member to that of a rigid one. Examples are presented to demonstrate the validity and efficiency of the proposed approach. With only minor modifications, the proposed method is readily implemented in existing rigid frame analysis and design computer programs.Key words: steel frame, semirigid connection, second-order analysis, P-Δ effect.


Sign in / Sign up

Export Citation Format

Share Document