beam columns
Recently Published Documents


TOTAL DOCUMENTS

961
(FIVE YEARS 132)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 254 ◽  
pp. 113814
Author(s):  
Dao Hoang Hiep Phan ◽  
Vipulkumar Ishvarbhai Patel ◽  
Qing Quan Liang ◽  
Haider Al Abadi ◽  
Huu-Tai Thai

2022 ◽  
Vol 252 ◽  
pp. 113729
Author(s):  
Zhongqi Chen ◽  
Guo-Qiang Li ◽  
Mark A. Bradford ◽  
Yan-Bo Wang ◽  
Chenhui Zhang ◽  
...  

2022 ◽  
Vol 148 (2) ◽  
Author(s):  
Alexander R. Hartloper ◽  
Albano de Castro e Sousa ◽  
Dimitrios G. Lignos

2022 ◽  
pp. 136943322110651
Author(s):  
Mizan Ahmed ◽  
Qing Quan Liang ◽  
Ahmed Hamoda

Circular concrete-filled double-skin steel tubular (CFDST) columns with external stainless-steel are high-performance composite columns that have potential applications in civil construction including the construction of offshore structures, bridge piers, and transmission towers. Reflecting the limited research performed on investigating their mechanical performance, this study develops a computationally efficient fiber model to simulate the responses of short and slender beam-columns accounting for the influences of material and geometric nonlinearities. Accurate material laws of stainless steel, carbon steel, and confined concrete are implemented in the mathematical modeling scheme developed. A new solution algorithm based on the Regula-Falsi method is developed to maintain the equilibrium condition. The independent test results of short and slender CFDST beam-column are utilized to validate the accuracy of the theoretical solutions. The influences of various column parameters are studied on the load-axial strain [Formula: see text] curves, load-lateral deflection [Formula: see text] curves, column strength curves, and interaction curves of CFDST columns. Design formulas are suggested for designing short and beam-columns and validated against the numerical results. The computational model is found to be capable of simulating the responses of CFDST short and slender columns reasonably well. Parametric studies show that the consideration of the concrete confinement is important for the accuracy of the prediction of their mechanical responses. Furthermore, high-strength concrete can be utilized to enhance their load-carrying capacity particularly for short and intermediate slender beam-columns. The strengths of CFDST columns computed by the suggested design model are in good agreement with the test and numerical results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Flávio Alexandre Matias Arrais ◽  
Nuno Lopes ◽  
Paulo Vila Real

PurposeStainless steel has different advantages when compared to conventional carbon steel. The corrosion resistance and aesthetic appearance are the most known; however, its better behaviour under elevated temperatures can also be important in buildings design. In spite of the initial cost, stainless-steel application as a structural material has been increasing. Elliptical hollow sections integrate the architectural attributes of the circular hollow sections and the structural advantages of the rectangular hollow sections (RHSs). Hence, the application of stainless-steel material combined with elliptical hollow profiles stands as an interesting design option. The purpose of the paper is to better understand the resistance of stainless-steel-beam columns in case of fireDesign/methodology/approachThe research presents a numerical study on the behaviour of stainless-steel members with slender elliptical hollow section (EHS) subjected to axial compression and bending about the strong axis at elevated temperatures. A parametric numerical study is presented here considering with and without out-of-plane buckling different stainless-steel grades, cross-section and member slenderness, bending moment diagrams and elevated temperatures.FindingsThe tested design methodologies proved to be inadequate for the EHS members being in some situations too conservative.Originality/valueThe safety and accuracy of Eurocode 3 (EC3) design methodology and of a recent design proposal developed for I-sections and cold-formed RHSs are analysed applying material and geometric non-linear analysis considering imperfections with the finite element software SAFIR.


2021 ◽  
Vol 10 (4) ◽  
pp. 253-268
Author(s):  
Ruhi Aydin

In the static analysis of beam-column systems using matrix methods, polynomials are using as the shape functions. The transverse deflections along the beam axis, including the axial- flexural effects in the beam-column element, are not adequately described by polynomials. As an alternative method, the element stiffness matrix is modeling using stability parameters. The shape functions which are obtaining using the stability parameters are more compatible with the system’s behavior. A mass matrix used in the dynamic analysis is evaluated using the same shape functions as those used for derivations of the stiffness coefficients and is called a consistent mass matrix. In this study, the stiffness and consistent mass matrices for prismatic three-dimensional Bernoulli-Euler and Timoshenko beam-columns are proposed with consideration for the axial-flexural interactions and shear deformations associated with transverse deflections along the beam axis. The second-order effects, critical buckling loads, and eigenvalues are determined. According to the author’s knowledge, this study is the first report of the derivations of consistent mass matrices of Bernoulli-Euler and Timoshenko beam-columns under the effect of axially compressive or tensile force.


Sign in / Sign up

Export Citation Format

Share Document