bending stresses
Recently Published Documents


TOTAL DOCUMENTS

621
(FIVE YEARS 87)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bohumir Strnadel ◽  
Anees Udyawar

Abstract Fully plastic collapse stresses for circumferentially part-through cracked pipes subjected to bending stresses are estimated by Limit Load Criteria provided by the ASME Code Section XI. Allowable crack depths were determined by using the Limit Load Criteria and that are tabulated in the ASME Code Section XI for different plant service level conditions. On the other hand, crack penetration bending stresses for part-through cracked pipes were estimated by using the Local Approach of Limit Load Criteria. By using these Criteria, the study presented in this paper obtained allowable crack depths at penetration for circumferentially part-through cracked pipes. Comparing the allowable crack depths obtained by both methods for each service level, it is evident that the allowable crack depths at penetration calculated by the Local Approach of Limit Load Criteria are almost always smaller than those at fully plastic collapse stresses calculated by the Limit Load Criteria. It was found that the allowable crack depths provided by the ASME Code Section XI are less conservative for crack penetrations.


Author(s):  
Prof. G. C. Jawalkar

Abstract: Slender member is subjected to axial load and biaxial bending moment and fails due to buckling. This buckling is caused due to slenderness effect also known as ‘P∆’ effect. This buckling gives rise to excessive bending moment occurring at a point of maximum deflection. This additional bending moment is considered in second order analysis. The objective of the research reported in this paper is to formulate bending moment equation by using beam column theory and to study the behaviour of solid circular section and hollow circular section of bridge pier. The optimization in area of cross section is done by providing a combination of solid and hollow circular section in place of a solid circular section of pier within permissible limits. A comparative study on behaviour for all three conditions is been carried out. Keywords: slender column, buckling, ‘P∆’ effect, beam-column, second order analysis, bridge pier.


2021 ◽  
Vol 154 (A3) ◽  
Author(s):  
J R MacKay ◽  
M J Smith ◽  
F Van Keulen ◽  
T N Bosman

The effect of corrosion damage on overall collapse strength of submarine pressure hulls was studied experimentally. Ring-stiffened cylinders were machined from aluminium tubing and loaded to collapse under external pressure. In selected specimens, some of the outer shell material was machined away in large single patches, representing general corrosion. Other specimens had many smaller patches, representing corrosion pitting from the outside of the hull, followed by grinding. Large-amplitude out-of-circularity (OOC) was introduced by mechanically deforming selected cylinders. Clusters of artificial corrosion pits were found to have approximately the same effect on collapse pressure as equal-depth general corrosion covering the same region of plating. General corrosion was found to be most severe when it was “in-phase” with OOC, since, during pressure loading, high compressive stresses resulting from corrosion were compounded by compressive bending stresses associated with OOC, and furthermore, the corrosion tended to increase the geometric imperfection itself. On the other hand, out-of-phase corrosion reduced the effect of OOC, while at the same time the thinning-associated compressive stresses were counteracted by local tensile bending stresses associated with OOC, so that strength reductions were correspondingly smaller. Overall collapse pressures for corroded specimens were reduced by, on average, 0.85% for each 1% of shell thinning. That result is based on a linear approximation of the nonlinear relationship between thinning and collapse pressure. The linear trend-line, which was used to account for the experimental scatter, is based on specimens with 13 to 27% shell thinning, and with a variety of corrosion areas and OOC amplitudes.


Author(s):  
Benedikt Diepold ◽  
Christopher Schunk ◽  
Frank Kümmel ◽  
Tobias Fey ◽  
Aruna Prakash ◽  
...  

2021 ◽  
Author(s):  
Ryo Nishiyama ◽  
Motohiro Sato

Abstract Bamboo has historically been used in Japan as a structural material and for building tools such as fishing rods owing to its remarkable structural properties. In recent years, the materials used for manufacturing fishing rods have changed greatly owing to the development of composite materials; however, the basic slender tapered hollow cylindrical fishing rod design has remained unchanged throughout the long history of fishing. However, the mechanical rationale behind this structural design has not yet been sufficiently verified, and this study clarifies this. The analysis was performed by solving the nonlinear bending equation of a slender tapered cantilever beam with a concentrated load at the tip, which causes large deflection, using the Runge–Kutta method. The deflection curves and bending stresses were obtained, and the structural design to minimize the stresses was explored. Our results may prove useful for bamboo-inspired bionic design and bring to light our ancestors’ deep knowledge of natural materials and their advanced technological capabilities.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2136
Author(s):  
Mingmin Ding ◽  
Yuzhou Shen ◽  
Yang Wei ◽  
Bin Luo ◽  
Lulu Wang ◽  
...  

A steel-batten ribbed cable dome structural system is proposed. By replacing the upper flexible cables with semi-rigid steel battens, rigid roofing materials were conveniently installed overhead via non-bracket or less-bracket technology. Additionally, an 8 m diameter test model was designed, and a ‘ω’ shaped less-bracket consequent hoist-dragging system was adopted. Finally, the test model was tested under symmetric and asymmetric uniform loading arrangements, while a finite element model was established to verify the test values. The results indicate that the measured values are basically consistent with the finite element values. In the early steps of hoisting and dragging, the structure establishes a prestress, accumulates stiffness, and found its internal force balance, while the entire structure keeps a “ω” shape to guarantee stability. As the internal forces of the components increase, the structure turns from “ω” to “m” and finally reached its designed shape. With increasing symmetric uniform load, the internal forces of the cables decrease, the bending stresses of the steel battens increase, and the steel battens remain in the elastic stage. Under an asymmetric uniform load, the high loaded area is displaced downward, and the low loaded area behaves upward, twisting the overall structure.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012162
Author(s):  
Gulzar H. Barbhuiya ◽  
Syed Danish Hasan ◽  
Mohammed Harun Al-Rashid

Abstract The need to come up with economical and efficient structural design led the engineers and researchers to focus more on shell structures. It is more durable, economical as it requires a minimum amount of material provides larger interior space and is aesthetic. A shell dominantly behaves as a membrane, though, at the edges, bending stresses get accumulated. Albeit several theories have been put forward, Schorer’s theory is eminent in the analysis of the long span thin cylindrical shells. This study is focused on the analysis of the stresses by utilizing the Fourier series and Schorer’s theory. Further, the shell is designed for the steel reinforcement as per the Concrete Reinforcing Steel Institute (CRSI) Design Handbook after calculating the final stress resultants and the detailing is also depicted.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012042
Author(s):  
D Pavlou ◽  
N D Adasooriya

Abstract In the last two decades FRP pipelines have attracted the attention of the oil industry because of their high strength, excellent fatigue performance and low specific weight. On the other hand, the final cost of installation of FRP pipelines is comparable to the cost of carbon steel ones. Therefore, their implementation in offshore applications seems to be advantageous. During offshore installation, the curvatures of the pipes during the S-lay or J-lay installation processes cause high bending stresses and risk for bending-induced local buckling. Since the pipe wall is multi-layered and the laminae are anisotropic, the calculation of critical bending moments is difficult. In the present work, an analytical solution of critical bending moments for bending-induced local buckling is provided. The proposed method uses the classical lamination theory of multi-layered anisotropic materials and Flügge’s assumption for local buckling analysis of pipelines. Results for E-Glass fiber reinforced polymeric pipelines are provided and discussed.


Author(s):  
Vidyabhusan Patel

Abstract: This paper investigates the characteristics of a gear system including contact stresses, bending stresses, and the transmission errors of gears in mesh. The objective of this paper is to compare values of contact stress and dynamic analysis obtained by theoretical hertz equation with the ANSYS result. A two stage spur gear box has been designed for material handling application by manual calculation and then performs contact stress and dynamic Simulation to ensure its reliable working. The results of the two-dimensional Finite Element Method (FEM) analysis from ANSYS and theoretical results are well comparable. Keywords: involute, spur gear, contact stress, dynamic analysis, finite element analysis


2021 ◽  
pp. 147592172110506
Author(s):  
Nicholas E. Silionis ◽  
Konstantinos N. Anyfantis

Interest has been expressed during the past few years toward incorporating structural health monitoring (SHM) systems in ship hull structures for detecting damages that cause significant load-carrying reductions and subsequent load redistributions. The guiding principle of the damage identification strategy considered in this work is based upon measuring, through a limited number of sensors, the static strain redistributions caused by an extensive damage. The problem is tackled as a statistical pattern recognition one, and therefore, methods sourcing from machine learning (ML) are applied. The SHM strategy is both virtually and experimentally applied to a thin-walled prismatic geometry that represents an idealized hull form solely subjected to principal bending stresses (sagging/hogging). Damage modes causing extensive stress redistribution, are abstractly represented by a circular discontinuity. The damage identification problem is treated in a hierarchical order, initialized by damage detection and moving to an increasingly more localized prediction of the damage location. Training datasets for the ML tools are generated from numerical finite element simulations. Measurement uncertainty is propagated in the theoretical strains by information inferred from experimental data. Two different sensor architectures were assessed. An experimental programme is performed for testing the accuracy of the proposed damage identification strategy, yielding promising results and providing valuable insights.


Sign in / Sign up

Export Citation Format

Share Document