Experimental and numerical study on the behavior of axially compressed high strength steel columns with H-section

2012 ◽  
Vol 43 ◽  
pp. 149-159 ◽  
Author(s):  
Yan-Bo Wang ◽  
Guo-Qiang Li ◽  
Su-Wen Chen ◽  
Fei-Fei Sun
Author(s):  
Faycal Ben-Yahia ◽  
James A. Nemes ◽  
Farid Hassani

An experimental and numerical study was performed to evaluate the crashworthiness of several advanced high strength steels. The behavior of two Dual Phase (DP) steels and an HSLA steel are compared by examining the crush response of longeron column specimens, experimentally and computationally. The closed section columns, fabricated by spot welding formed channel sections, in both single hat and double hat configurations were exposed to 182 kg and 454 kg axial impacts at different velocities. Final column height and impact force history were recorded and compared with results of finite element simulation of the columns. Good agreement was found between experiments and computations.


2018 ◽  
Vol 878 ◽  
pp. 296-301
Author(s):  
Dong Won Jung

The roll forming is one of the simplest manufacturing processes for meeting the continued needs of various industries. The roll forming is increasingly used in the automotive industry to form High Strength Steel (HSS) and Advanced High Strength Steel (AHSS) for making structural components. In order to reduce the thinning of the sheet product, traditionally the roll forming has been suggested instead of the stamping process. The increased product performance, higher quality, and the lowest cost with other advantages have made roll forming processes suitable to form any shapes in the sheets. In this numerical study, a Finite Element Method is applied to estimate the stress, strain and the thickness distribution in the metal sheet with quadrilateral shape, ribs formed by the 11 steps roll forming processes using a validated model. The metal sheet of size 1,000 × 662 × 1.6 mm taken from SGHS steel was used to form the quadrilateral shape ribs on it by the roll forming process. The simulation results of the 11 step roll forming show that the stress distribution was almost uniform and the strain distribution was concentrated on the ribs. The maximum thinning strain was observed in the order of 15.5 % in the middle rib region possibly due to the least degree of freedom of the material.


2019 ◽  
Vol 14 (1) ◽  
pp. 10-22
Author(s):  
Michaela Gkantou ◽  
Marios Theofanous ◽  
Charalampos Baniotopoulos

Sign in / Sign up

Export Citation Format

Share Document