column height
Recently Published Documents


TOTAL DOCUMENTS

271
(FIVE YEARS 108)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Junjie Wang ◽  
Xiao Xu ◽  
Wei Wang ◽  
Yudong Li ◽  
Shihan Wu ◽  
...  

The airlift column is a promising technology for the removal of volatile gas from high-viscosity molten sulfur. However, a detailed analysis is lacking on the hydrodynamic properties inside the column, due to the difficulty in flow behavior detection in the opaque molten sulfur. In this work, we adopted the computational fluid dynamics simulation to understand the hydrodynamic behaviors in an airlift column for molten sulfur aeration. In addition, we analyzed the impacts of the superficial gas velocity (UGr) and column height on the hydrodynamic characteristics, such as gas holdup, average bubble diameter, and liquid circulation velocity (ULr) in the column. The simulation shows that at a constant column height of 15 m, an increase on gas holdup can be obtained with the increase of the superficial gas velocity, while the bubble diameter remains almost constant. Once the superficial gas velocity exceeded 0.333 m/s, the liquid circulation velocity increased slowly. With a variation on the column height from 5 to 25 m, a negligible change on gas holdup, but an obvious increase on liquid circulation velocity and bubble diameter is observed at the given superficial gas velocity of 0.0389 m/s. Furthermore, the simulation shows a similar trend, but with considerably more detailed information, on the relationship between the gas holdup and liquid circulation velocity when compared to the predictions from the Chisti correlation (1988) and an optimized correlation proposed in this work.


2021 ◽  
Vol 947 (1) ◽  
pp. 012001
Author(s):  
M T Le ◽  
N M Nguyen ◽  
X T Le

Abstract Two types of columns, three types of packings, and four levels of column height were considered to investigate how column and packings affected the separation in the vacuum fractional distillation process of raw tea tree (Melaleuca alternifolia) oil (TTO). This study discussed those effects on purity, yield, and overall discovery to select the most excellent operating conditions for enriching terpinen-4-ol. After the experiments, the essential oil was successfully separated into two fractions, in which the second one composed mostly the main TTO constituent, terpinen-4-ol. The best result was achieved by conducting the distillation on a 300-mm Hempel column filled with small Fenske helices (10 mm × 2 mm i.d.) at the system pressure of 60 mmHg. GC/MS analysis showed an almost 2.5-fold increase in the content of terpinen-4-ol, from 39.23% to 95.77% after fractionation. Meanwhile, there was 75% of terpinen-4-ol successfully recovered from its parental oil. Hence, the vacuum fraction distillation could be an effective method to enrich the terpinen-4-ol content in TTO.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jinyou Zhao ◽  
Junming Wei ◽  
Jun Wang

The horizontal bracing forces of column-bracing systems derived from past studies and current design codes were considered only located at middle of columns. Actually, the horizontal braces used to reduce the out-of-plane effective column lengths are frequently designed not to locate at middle of columns. In this paper, a large number of column-bracing systems with the horizontal braces unlocated at middle of columns were modelled and analyzed using the finite element method, in which the random initial geometric imperfections of both the columns and the horizontal braces unlocated at middle of columns were well considered by the Monte Carlo method. Based on the numerical calculations, parametric analysis, and probability statistics, the probability density function of the horizontal bracing forces was found, so that the corresponding design forces of horizontal braces unlocated at middle of columns were proposed which were compared with the design mid-height horizontal bracing forces in the previous study and the relevant codes. The results indicate that the design forces of the horizontal braces located at 0.6 column height are smaller than the mid-height horizontal bracing forces in the previous study while the design forces of horizontal braces located at 0.7 column height are larger than the mid-height horizontal bracing forces in the previous study. The proposed design forces of the horizontal braces located and unlocated at middle of columns are both smaller than the mid-height horizontal bracing forces stipulated in GB50017-2017, Eurocode 3-1992, and AS4100-1998. The above conclusions provide references for the engineering applications and further related code revisions.


2021 ◽  
Vol 63 (11) ◽  
pp. 34-39
Author(s):  
Thi Thao Nguyen ◽  
◽  
Xuan Truong Do ◽  

Vietnam is one of the world’s largest annual anise harvest countries. However, products from anise are mainly in the form of dried anise fruit and crude star anise essential oil with low economic value. The main component of the star anise essential oil is trans-anethole which needs to be purified to produce higher-value products. This study focused on building an experimental system for purifying star anise essential oil by a batch distillation column working at vacuum pressure. The products obtained during the purification process were analysed by gas chromatography-mass spectrometry (GC-MS). Analytical results were used to evaluate the ability to separate volatile impurities in the crude star anise essential oil. Results showed that the bottom temperature of the tower below 150oC, corresponding to a vacuum pressure of less than 0.1 bar, can reduce the thermal decomposition of essential oils. The volatile components, such as α-pinene, β-phellandrene, limonene, and linalool, were thoroughly separated at the top of the tower. The purified star anise essential oil was from the bottom of the distillation and had the anethole composition of over 88% of mass fraction (wt.%). Anethole recovery efficiency was 98.5 and 88.8% at a pressure of 0.1 and 0.08 bar, respectively. The bottom product can have a higher anethole composition if increasing the column height, the reflux ratio, and decreasing the pressure and the quality of impurities removed at the top is increased.The experimental results are helpful for the calculation, design, manufacture, and operation of an industrial-scale essential oil purification system.


Religions ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 985
Author(s):  
Ju-Hwan Cha ◽  
Young-Jae Kim

This study examines how the wooden architecture of the Goryeo Dynasty in Korea evolved in an original way while incorporating Chinese architectural principles. For the Goryeo Era’s timber-framed buildings, eave purlin height was determined according to √2H times the eave column height (H), while the eave column height influenced the proportional location of each purlin, determined by the √2H times decrease rate in the cross-section. Thus, eave column height was proportionately connected to a geometric sequence with a common ratio of √2H. This technical approach, achieved using an L-square ruler and a drawing compass, contributed to determining eave purlin and ridge post placement, bracket system height, and outermost bay width. This study notes that the practical works were consistently preserved in East Asian Buddhist architecture, in that a universal rule of proportion was applied to buildings constructed during the Tang–Song and the Goryeo Dynasties, surmounting differences in local construction methods. These design principles were a vestige of socio-cultural exchange on the East Asian continent and a minimal step toward the establishment of structurally safe framed buildings.


2021 ◽  
Vol 1206 (1) ◽  
pp. 012014
Author(s):  
D Raval ◽  
S V Jain ◽  
A M Acharii ◽  
K Ghosh

Abstract In the present study, the design and analysis of smoke generator are done for the low-speed wind tunnel. The wind tunnel fan is fitted with the Variable Frequency Drive to produce the wind speed in the range of 3 to 32 m/s with fan speed of 150 to 1500 rpm. The design of smoke generator was done according to Preston Sweeting mist generator principle corresponding to the free stream velocity of 3 m/s. A controlled smoke generator consisting of kerosene reservoir, controlled heater, blower, liquid column height adjustment mechanism, valves etc. was designed and fabricated. The smoke generator produced the smoke at the rate of 154 cm3/s which was close to the design flow rate of 149 cm3/s. To supply the required quantity of smoke in the wind tunnel, the smoke rake of NACA 0010 profile was developed and installed in the rapid contraction section of the wind tunnel to achieve the streamlined flow. The parametric studies were done on the smoke generator at different power inputs and its effects were studied on smoke temperature, smoke discharge and boiling time of the kerosene. The flow visualization was carried out on NACA 0015 airfoil model and the images were captured to examine the flow physics around them under different operating conditions.


2021 ◽  
Vol 921 (1) ◽  
pp. 012032
Author(s):  
H Tumengkol ◽  
R Irmawaty ◽  
H Parung dan ◽  
A Amiruddin

Abstract This research discusses seismic detailing for column-beam connections based on the special moment-hoe frame system (SPRMK) stipulated in the concrete regulations of SNI 2847:2019. Exterior-type column-beam connections with beam sizes of 200 mm × 300 mm and column sizes of 300 mm × 300 mm. The beam span is 1450 mm and the column height is 2850 mm. The reinforcement used in the beam diameter D13 as much as 6 pieces with a barge diameter of 8 mm. In the column, the main reinforcement diameter is D16 as much as 8 pieces with a barge reinforcement diameter of 8 mm with a distance of 75 mm. The detailing provisions are based on SNI 2847:2019 specifically in article 18.6, article 18.7, and article 18.8. Based on this provision obtained for detailing the connection of the column including blocks, columns, and joints meet the requirements specified in SNI 2847:2019.


Author(s):  
Trung Hieu Nguyen ◽  
Xuan Dat Pham ◽  
Khuong Duy Tran

Strengthening of reinforced concrete (RC) columns is needed when the actual load-carrying capacity of the columns does not reach the required level due to either structural deterioration or increasing acting loads. This experimental study aims to evaluate the strengthening effect on the eccentrically-compressed RC columns using Carbon fiber reinforced polymer (CFRP) sheets, that confine around the column cross-section. Three RC column specimens with the same geometrical dimensions, reinforcement detailing, and concrete compressive strength were cast and tested in the current experimental investigation. One RC column without being strengthened is referred as the control specimen whereas two other RC columns were partially strengthened by CFRP sheets. All three RC columns were axially loaded with the same initial eccentricity e0 of 80 mm. Based on the test results such as the ultimate load-carrying capacity, the load-rotation relationship, and load-curvature at the middle of column height, the effectiveness of the strengthening technique is discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Mohamed Farouk ◽  
Majed Alzara ◽  
A. Ehab ◽  
A. M. Yosri

Based on modified methods for the results of first-order analysis of RC columns, different codes approximate the second-order effects by using equations focusing on the maximum additional moment through the column height. These equations did not refer to the additional moments between the column and the connected beam, only the effect of the connected beams is taken into consideration by dealing with the effective length of the column, not the total length. Moreover, these equations did not take into account the second-order effect, which is caused by axial force and the inverse moments due to beam restriction for the column ends. This paper presents a new moment magnifiers matrix for the additional moments at the connection between braced columns and the connected beams as a simplified computation that can be used in the design procedure. That is through an equation based on transforming the original long column in second-order analysis to an equivalent isolated column. The equivalent column was represented as an element restricted with rotational spring support at its ends, and it is subjected to lateral distributed loads that have the same influence of the second-order effect on the induced additional moments in the long column. The suggested equivalent column can be used to form the additional bending moment diagram, also to compute the additional deformations as well. Numerous factors were analyzed linearly by using the presented new moment magnifiers matrix and finite element method, and the results proved the efficiency of the proposed model. Although the presented suggested model is based on the isolated analysis of the long column, the effect of the additional moments in the adjacent long column can be considered by presented two suggestions to improve the model. Also, development was proceeded on the model by modifying the flexural rigidity (EI) which is recommended in ACI to appropriate the time of failure. The additional moment values of the developed model were close to the values calculated by the ACI equation.


2021 ◽  
Author(s):  
Leonardo Mingari ◽  
Arnau Folch ◽  
Andrew T. Prata ◽  
Federica Pardini ◽  
Giovanni Macedonio ◽  
...  

Abstract. Modelling atmospheric dispersal of volcanic ash and aerosols is becoming increasingly valuable for assessing the potential impacts of explosive volcanic eruptions on infrastructures, air quality, and aviation. Management of volcanic risk and reduction of aviation impacts can strongly benefit from quantitative forecasting of volcanic ash. However, an accurate prediction of volcanic aerosol concentrations using numerical modelling relies on proper estimations of multiple model parameters which are prone to errors. Uncertainties in key parameters such as eruption column height, physical properties of particles or meteorological fields, represent a major source of error affecting the forecast quality. The availability of near-real-time geostationary satellite observations with high spatial and temporal resolutions provides the opportunity to improve forecasts in an operational context by incorporating observations into numerical models. Specifically, ensemble-based filters aim at converting a prior ensemble of system states into an analysis ensemble by assimilating a set of noisy observations. Previous studies dealing with volcanic ash transport have demonstrated that a significant improvement of forecast skill can be achieved by this approach. In this work, we present a new implementation of an ensemble-based Data Assimilation (DA) method coupling the FALL3D dispersal model and the Parallel Data Assimilation Framework (PDAF). The FALL3D+PDAF system runs in parallel, supports online-coupled DA and can be efficiently integrated into operational workflows by exploiting high-performance computing (HPC) resources. Two numerical experiments are considered: (i) a twin experiment using an incomplete dataset of synthetic observations of volcanic ash and, (ii) an experiment based on the 2019 Raikoke eruption using real observations of SO2 mass loading. An ensemble-based Kalman filtering technique based on the Local Ensemble Transform Kalman Filter (LETKF) is used to assimilate satellite-retrieved data of column mass loading. We show that this procedure may lead to nonphysical solutions and, consequently, conclude that LETKF is not the best approach for the assimilation of volcanic aerosols. However, we find that a truncated state constructed from the LETKF solution approaches the real solution after a few assimilation cycles, yielding a dramatic improvement of forecast quality when compared to simulations without assimilation.


Sign in / Sign up

Export Citation Format

Share Document