advanced high strength steels
Recently Published Documents


TOTAL DOCUMENTS

550
(FIVE YEARS 129)

H-INDEX

37
(FIVE YEARS 5)

10.30544/682 ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 505-517
Author(s):  
Ashok Kumar Srivastava ◽  
Pradip K Patra

With an increasing demand for safer and greener vehicles, mild steel and high strength steel are being replaced by much stronger advanced high strength steels of thinner gauges. However, the welding process of advanced high strength steels is not developed at the same pace. The performance of these welded automotive structural components depends largely on the external and internal quality of weldment. Gas metal arc welding (GMAW) is one of the most common methods used in the automotive industry to join car body parts of dissimilar high strength steels. It is also recognized for its versatility and speed. In this work, after a review of GMAW process and issues in welding of advanced high strength steels, a welding experiment is carried out with varying heat input by using spray and pulse-spray transfer GMAW method with filler wires of three different strength levels. The experiment results, including macro-microstructure, mechanical properties, and microhardness of weld samples, are investigated in detail. Very good weldability of S650MC is demonstrated through the weld joint efficiency > 90%; no crack in bending of weld joints, or fracture of tensile test sample within weld joint or heat affected zone (HAZ), or softening of the HAZ. Pulse spray is superior because of thinner HAZ width and finer microstructure on account of lower heat input. The impact of filler wire strength on weldability is insignificant. However, high strength filler wire (ER100SG) may be chosen as per standard welding practice of matching strength.


Author(s):  
Ali Bandizaki ◽  
Asghar Zajkani ◽  
Saeed Moulood

In this paper, the influence of functional elastomeric substrate-supported layers for enhancing potential resistance capability against localized plastic failure of advanced high strength steels is considered based on a localized necking model of vertex theory. Application of this structure leads to postponing the plastic instability of the metallic part. By defining diffuse and localized modes of deformation in a general framework, the theoretical models are developed to predict necking limits at several stress states. In addition, the results of the Hookean and neo-Hookean elastomers are compared in terms of strain hardening with the anisotropy parameter of Hill’s yield criteria. Since necking band angle (NBA) is a principal factor for the necking prediction, its effect on bifurcation events is evaluated specifically for different ratios of stress rate, and quadratic and non-quadratic yield criteria. This analysis is performed by proposing a supported and yield-dependent necking bound angle (YD-NBA). All considerations are done by providing equilibrium conditions governed over the NBA. Finally, obtained results indicate good agreements between several theoretical considerations and experimental data.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1927
Author(s):  
Qingwen Guan ◽  
Wenjun Lu ◽  
Binbin He

Advanced high strength steels (AHSS) are developed to reduce vehicle weight without sacrificing passenger safety. The newly developed AHSS frequently incorporates the austenite as the intrinsic component with large amount and good stability, which is realized by carefully designed alloying elements and thermo-mechanical processing. To explore the great potential of austenite in enhancing the strain hardening behavior of AHSS, detailed information on the mechanical behavior of single austenite grain is a prerequisite, which can be collected by a small-scale test. The present work reviews the recent progress in understanding the nano/micro-mechanical behavior of austenite in varied AHSS. Three different plasticity modes including dislocation plasticity, martensitic transformation, and deformation twinning can be observed in the austenite grains during small-scale tests, given proper stacking fault energy and crystal orientation. The remaining issues concerned with the nano/micro-mechanical behavior of austenite are discussed. The present review advances the general understanding of the nano/micro-mechanical behavior of austenite grains in AHSS, which may shed light on the precise austenite engineering with the development of new AHSS, realizing the dream of high-performance steels at low cost.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lijia Zhao ◽  
John G. Speer ◽  
Peter Hodgson ◽  
Nobuhiro Tsuji

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1768
Author(s):  
Bryan Y. Navarrete Pino ◽  
Antonio A. Torres Castillo ◽  
Emmanuel J. Gutiérrez Castañeda ◽  
Luis A. Espinosa Zúñiga ◽  
Lorena Hernández Hernández ◽  
...  

The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution of microstructure and phase transformations were discussed from the behavior of intercritical continuous cooling transformation diagrams calculated with the software JMatPro, and further characterization of the steel by scanning electron microscopy, optical microscopy and dilatometry. Mechanical properties were estimated with a mathematical model obtained as a function of the alloying elements concentrations by multiple linear regression, and then compared to the experimental mechanical properties determined by uniaxial tensile tests. It was found that AHSS of third generation can be obtained by thermal cycles simulating CAG lines through modifications in chemistry of a commercial AISI-1015 steel, having an ultimate tensile strength of UTS = 1020–1080 MPa and an elongation to fracture of Ef = 21.5–25.3%, and microstructures consisting of a mixture of ferrite phase, bainite microconstituent and retained austenite/martensite islands. The determination coefficient obtained by multiple linear regression for UTS and Ef was R2 = 0.94 and R2 = 0.84, respectively. In addition, the percentage error for UTS and Ef was 2.45–7.87% and 1.18–16.27%, respectively. Therefore, the proposed model can be used with a good approximation for the prediction of mechanical properties of low-alloyed AHSS.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1699
Author(s):  
Marco Thomä ◽  
Guntram Wagner

The manufacturing of advanced high-strength steels with enhanced ductility is a persistent aim of research. The ability of a material to absorb high loads while showing a high deformation behavior is a major task for many industrial fields like the mobility sector. Therefore, the material properties of advanced high-strength steels are one of the most important impact factors on the resulting cyclic fatigue behavior. To adjust advanced material properties, resulting in high tensile strengths as well as an enhanced ductility, the heat treatment process of quenching and partitioning (QP) was developed. The quenching takes place in a field between martensite start and martensite finish temperature and the subsequent partitioning is executed at slightly elevated temperatures. Regarding the sparsely investigated field of fatigue research on quenched and partitioned steels, the present work investigates the influence of a QP heat treatment on the resulting microstructure by light and scanning electron microscopy as well as on the mechanical properties such as tensile strength and resistance against fatigue regarding two different heat treatment conditions (QP1, QP2) in comparison to the cold-rolled base material of 42SiCr steel. Therefore, the microscopic analysis proved the presence of a characteristic quenched and partitioned microstructure consisting of a martensitic matrix and partial areas of retained austenite, whereas carbides were also present. Differences in the amount of retained austenite could be observed by using X-ray diffraction (XRD) for the different QP routes, which influence the mechanical properties resulting in higher tensile strength of about 2000 MPa for QP1 compared to about 1600 MPa for QP2. Furthermore, the transition for the fatigue limit was approximated by using stepwise load increase tests (LIT) and afterwards verified by constant amplitude tests (CAT) in accordance with the staircase method, whereas the QP 1 condition reached the highest fatigue strength of 900 MPa. Subsequent light and scanning electron microscopy of selected fractured surfaces and runouts showed a different behavior regarding the size of the fatigue fracture area and also differences in the microstructure of these runouts.


2021 ◽  
pp. 141-148
Author(s):  
P. V. S. Lakshminarayana ◽  
Jai Prakash Gautam ◽  
P. Mastanaiah ◽  
G. Madhusudan Reddy ◽  
K. Bhanu Sankara Rao

Sign in / Sign up

Export Citation Format

Share Document