Analytical and experimental studies on dynamic instability of simply supported rectangular plates with arbitrary concentrated masses

2019 ◽  
Vol 196 ◽  
pp. 109288 ◽  
Author(s):  
Zilin Zhong ◽  
Airong Liu ◽  
Yong-Lin Pi ◽  
Jian Deng ◽  
Hanwen Lu ◽  
...  
Author(s):  
G. Patel ◽  
A. N. Nayak ◽  
A. K. L. Srivastava

The present paper reports an extensive study on dynamic instability characteristics of curved panels under linearly varying in-plane periodic loading employing finite element formulation with a quadratic isoparametric eight nodded element. At first, the influences of three types of linearly varying in-plane periodic edge loads (triangular, trapezoidal and uniform loads), three types of curved panels (cylindrical, spherical and hyperbolic) and six boundary conditions on excitation frequency and instability region are investigated. Further, the effects of varied parameters, such as shallowness parameter, span to thickness ratio, aspect ratio, and Poisson’s ratio, on the dynamic instability characteristics of curved panels with clamped–clamped–clamped–clamped (CCCC) and simply supported-free-simply supported-free (SFSF) boundary conditions under triangular load are studied. It is found that the above parameters influence significantly on the excitation frequency, at which the dynamic instability initiates, and the width of dynamic instability region (DIR). In addition, a comparative study is also made to find the influences of the various in-plane periodic loads, such as uniform, triangular, parabolic, patch and concentrated load, on the dynamic instability behavior of cylindrical, spherical and hyperbolic panels. Finally, typical design charts showing DIRs in non-dimensional forms are also developed to obtain the excitation frequency and instability region of various frequently used isotropic clamped spherical panels of any dimension, any type of linearly varying in-plane load and any isotropic material directly from these charts without the use of any commercially available finite element software or any developed complex model.


1966 ◽  
Vol 17 (4) ◽  
pp. 371-394 ◽  
Author(s):  
J. Djubek

SummaryThe paper presents a solution of the non-linear problem of the deformation of slender rectangular plates which are stiffened along their edges by elastically compressible stiffeners flexible in the plane of the plate. The webplate is assumed to be simply-supported along its contour. Numerical results showing the effect of flexural and normal rigidity of stiffeners are given for a square webplate loaded by shear and compression.


2007 ◽  
Vol 34 (3) ◽  
pp. 221-248 ◽  
Author(s):  
Yos Sompornjaroensuk ◽  
Kraiwood Kiattikomol

The paper deals with the application of dual-series equations to the problem of rectangular plates having at least two parallel simply supported edges and a partial internal line support located at the centre where the length of internal line support can be varied symmetrically, loaded with a uniformly distributed load. By choosing the proper finite Hankel transform, the dual-series equations can be reduced to the form of a Fredholm integral equation which can be solved conveniently by using standard techniques. The solutions of integral equation and the deformations for each case of the plates are given and discussed in details.


Sign in / Sign up

Export Citation Format

Share Document