concentrated load
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 140)

H-INDEX

26
(FIVE YEARS 3)

Author(s):  
Paolo Foraboschi

Renovation, restoration, remodeling, refurbishment, and retrofitting of build-ings often imply modifying the behavior of the structural system. Modification sometimes includes applying forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the crack pattern that was produced by the distributed loads that acted in the past. If the concentrated load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar is present. So, the actual shear capacity around the midspan not only is low, but also can be substantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-reinforced-polymer composites can be used. This paper presents a design method to increase the concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be changed from distributed to concentrated, and an analytical model to pre-dict the concentrated load-carrying capacity of a beam in the strengthened state.


Author(s):  
Sanjay K. Bansal ◽  
Dhairya Gaur ◽  
Kingshuk Roy ◽  
Apoorva Choumal

Distributed renewable energy production is making smart microgrid concepts based on AC, DC, and hybrid-MG design more attractive (DRE). In light of the growing population and the pressing need to minimize the load, research into effective control techniques and architectural solutions is a hot topic right now. "However, a comprehensive and coordinated literature assessment of hierarchical control approaches based on diverse configurations of the microgrid (MG) architecture has been explored relatively little in the past.'' Primary, secondary, and tertiary methods to MG system control are outlined in this suggested method. Primary, secondary and third-tier techniques are examined for each MG structure in a short literature review. In addition, the paper offers the best and worst aspects of current control methods. In addition, a simulation research connected to the literature review's future trends in MG control is offered as a further contribution to this subject. Since renewable energy supplies are intermittent in nature, a hybrid microgrid is needed to minimize overall deficit inadequacies and increase system dependability. This is due to the depletion of natural resources and to the intermittent nature of renewable energy resources. Using a hybrid microgrid, the present distributed and concentrated load situations may be accommodated. In order to better understand how the hybrid microgrid may be integrated, optimized and controlled, there is a growing demand for research. It is necessary to do a thorough evaluation of the performance, efficiency, dependability, security, design flexibility, and cost-effectiveness of a hybrid microgrid. Issues such as AC and DC microgrids integrating into a single hybrid microgrid are discussed in this paper, as well as how to manage renewable energy resources in a cost-effective manner and how to place the optimal number of feeders in a microgrid. There is a quick overview of the primary research fields, with the goal of finding the research gap that may further enhance the grid's performance. ''New hybrid microgrid solutions are being offered in light of current study trends that have been determined to be the most effective and most-friendly." Research, comparative analysis, and further development of new methodologies related to hybrid microgrids will be aided by this study as the foundation for future work


2021 ◽  
Vol 6 (4) ◽  
pp. 42-53
Author(s):  
Vladimir Karpov ◽  
◽  
Evgeny Kobelev ◽  
Aleksandr Panin ◽  
◽  
...  

Introduction: Usually, to analyze statically indeterminate rod systems, the classical displacement method and preprepared tables for two types of rods of the main system are used. A mathematically correct representation of local loads with the use of generalized functions makes it possible to find an accurate solution of the differential equation for the equilibrium of a beam exposed to an arbitrary transverse load. Purpose of the study: We aimed to obtain analytical expressions for functions of deflection, rotation angles, transverse forces, and bending moments depending on four types of local loads for beams with different boundary conditions, so as to apply accurate solutions in the displacement method. Methods: We propose an analytical form of the displacement method to analyze rod structural models. For beams exposed to different types of transverse load (uniformly distributed force, concentrated force, or a couple of forces), accurate analytical solutions were obtained for functions of deflection, bending moments, and transverse forces at different types of beam ends’ restraint. This is possible due to the fact that concentrated load and load in the form of the moment of force can be specified by using unit column functions. By transforming Mohr’s integrals, using integration by parts, we show that the system of canonical equations of the displacement method was obtained based on the Lagrange principle. Results: Based on the analysis of a statically indeterminate frame, the effectiveness of the proposed analytical method is shown as compared with the classical displacement method.


2021 ◽  
Author(s):  
Miguel Abambres ◽  
He J

<p>Corrugated webs are used to increase the shear stability of steel webs of beam-like members and to eliminate the need of transverse stiffeners. Previously developed formulas for predicting the shear strength of trapezoidal corrugated steel webs, along with the corresponding theory, are summarized. An artificial neural network (ANN)-based model is proposed to estimate the shear strength of steel girders with a trapezoidal corrugated web, and under a concentrated load. 210 test results from previous published research were collected into a database according to relevant test specimen parameters in order to feed the simulated ANNs. Seven (geometrical and material) parameters were identified as input variables and the ultimate shear stress at failure was considered the output variable. The proposed ANN-based analytical model yielded maximum and mean relative errors of 0.0% for the 210 points from the database. Moreover, still based on those points, it was illustrated that the ANN-based model clearly outperforms the other existing analytical models, which yield mean errors larger than 13%.</p>


2021 ◽  
Author(s):  
Miguel Abambres ◽  
Lantsoght E

<p>According to the current codes and guidelines, shear assessment of existing reinforced concrete slab bridges sometimes leads to the conclusion that the bridge under consideration has insufficient shear capacity. The calculated shear capacity, however, does not consider the transverse redistribution capacity of slabs, thus leading to overconservative values. This paper proposes an artificial neural network (ANN)-based formula to come up with estimates of the shear capacity of one-way reinforced concrete slabs under a concentrated load, based on 287 test results gathered from the literature. The proposed model yields maximum and mean relative errors of 0.0% for the 287 data points. Moreover, it was illustrated to clearly outperform (mean <i>V<sub>test</sub> / V<sub>ANN</sub></i> =1.00) the Eurocode 2 provisions (mean <i>V<sub>E,EC </sub>/ V<sub>R,c</sub></i><sub> </sub>=1.59) for that dataset. A step-by-step assessment scheme for reinforced concrete slab bridges by means of the ANN-based model is also proposed, which results in an improvement of the current assessment procedures.<br></p>


2021 ◽  
Vol 11 (6) ◽  
pp. 7853-7860
Author(s):  
A. A. Abdulhussein ◽  
M. H. Al-Sherrawi

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased by 41 to 77% when steel collars were used. The experimental results were in good agreement with the numerical analysis acquired with the ABAQUS software.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2328
Author(s):  
Yingchun Liu ◽  
Ziwen He ◽  
Wenfu Zhang ◽  
Jing Ji ◽  
Yuchen Liu ◽  
...  

Tubular flange composite beams are increasingly applied in modern bridge structures. In order to investigate the overall stability behavior of doubly symmetric tubular flange composite beams with lateral bracing under concentrated load, the analysis of elastic lateral-torsional buckling is conducted by the energy variation method. The analytical solution of critical moment of doubly symmetric tubular flange composite beams with lateral bracing is obtained. Meanwhile, the simplified calculation formula of critical moment is fitted by 1stOpt software based on 26,000 groups of data, and the accuracy is verified by the finite element method. It is found that, the critical moment rises obviously with increasing lateral bracing stiffness, and adding lateral bracing to doubly symmetric tubular flange composite beams is beneficial to improve the overall stability in engineering practice. Finally, the influence of several parameters including concrete strength, span, steel ratio of flange and height-thickness ratio of web are studied. The results show that the concrete strength and the web height-thickness ratio have a weak influence on critical moment of elastic lateral-torsional buckling, while the influence of span-depth ratio and flange steel ratio is very significant.


2021 ◽  
Author(s):  
Ryo Nishiyama ◽  
Motohiro Sato

Abstract Bamboo has historically been used in Japan as a structural material and for building tools such as fishing rods owing to its remarkable structural properties. In recent years, the materials used for manufacturing fishing rods have changed greatly owing to the development of composite materials; however, the basic slender tapered hollow cylindrical fishing rod design has remained unchanged throughout the long history of fishing. However, the mechanical rationale behind this structural design has not yet been sufficiently verified, and this study clarifies this. The analysis was performed by solving the nonlinear bending equation of a slender tapered cantilever beam with a concentrated load at the tip, which causes large deflection, using the Runge–Kutta method. The deflection curves and bending stresses were obtained, and the structural design to minimize the stresses was explored. Our results may prove useful for bamboo-inspired bionic design and bring to light our ancestors’ deep knowledge of natural materials and their advanced technological capabilities.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 1710-1719
Author(s):  
Mehrdad Hejazi ◽  
Saeid Baranizadeh ◽  
Maryam Daei

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3789-3805
Author(s):  
Yun Sun ◽  
Yuqing Liu ◽  
Congzhe Wang ◽  
Yize Zuo ◽  
Haohui Xin

Sign in / Sign up

Export Citation Format

Share Document