finite hankel transform
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Samina Majeed ◽  
Farhad Ali ◽  
Anees Imtiaz ◽  
Ilyas Khan ◽  
Mulugeta Andualem

AbstractIn recent years, the use of magnetic particles for biomedicine and clinical therapies has gained considerable attention. Unique features of magnetic particles have made it possible to apply them in medical techniques. These techniques not only provide minimal invasive diagnostic tools but also transport medicine within the cell. In recent years, MRI, drug supply to infected tissue, Hyperthermia are more enhanced by the use of magnetic particles. The present study aims to observe heat and mass transport through blood flow containing magnetic particles in a cylindrical tube. Furthermore, the magnetic field is applied vertically to blood flow direction. The Caputo time fractional derivative is used to model the problem. The obtained partial fractional derivatives are solved using Laplace transform and finite Hankel transform. Furthermore, the effect of various physical parameters of our interest has also been observed through various graphs. It has been noticed that the motion of blood and magnetic particles is decelerated when the particle mass parameter and the magnetic parameter are increased. These findings are important for medicine delivery and blood pressure regulation.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fang Wang ◽  
Jinling Liu

Most articles choose the transcendental function B1rrn to define the finite Hankel transform, and very few articles choose B0rrn. The derivations of B0rrn and B1rrn are also considered the same. In this paper, we find that the derivative formulas for the transcend function BNrrn are different and prove the derivative formulas for B0rrn and B1rrn. Based on the exact formulas of B0rrn and B1rrn, we keep on studying the helical flow of a generalized Maxwell fluid between two boundless coaxial cylinders. In this case, the inner and outer cylinders start to rotate around their axis of symmetry at different angular frequencies and slide at different linear velocities at time t=0+. We deduced the velocity field and shear stress via Laplace transform and finite Hankel transform and their inverse transforms. According to generalized G and R functions, the solutions we obtained are given in the form of integrals and series. The solution of ordinary Maxwell fluid has been also obtained by solving the limit of the general solution of fractional Maxwell fluid.


2018 ◽  
Vol 31 (1) ◽  
pp. 203
Author(s):  
Hanan F. Qasim

The aim of this work presents the analytical studies of both the magnetohydrodynamic (MHD) flux and flow of the non-magnetohydro dynamic (MHD) for a fluid of generalized Burgers’ (GB) withinan annular pipe submitted under Sinusoidal  Pressure (SP)gradient. Closed beginning velocity's' solutions are taken by performing the finite Hankel transform (FHT) and Laplace transform (LT) of the successivefraction derivatives. Lastly, the figures were planned to exhibition the transformations effects of different fractional parameters (DFP) on the profile of velocity of both flows.


Sign in / Sign up

Export Citation Format

Share Document