Study on the nonlinear deformation and failure mechanism of a high arch dam and foundation based on geomechanical model test

2020 ◽  
Vol 207 ◽  
pp. 110287 ◽  
Author(s):  
Zhuofu Tao ◽  
Yaoru Liu ◽  
Qiang Yang ◽  
Shouguang Wang
2004 ◽  
pp. 557-562 ◽  
Author(s):  
Lin Zhang ◽  
Jianye Chen ◽  
Xiaoqiang Liu ◽  
Lin'guang Liu

2011 ◽  
Vol 243-249 ◽  
pp. 4506-4510 ◽  
Author(s):  
Fu Hai Guan ◽  
Yao Ru Liu ◽  
Qiang Yang ◽  
Ruo Qiong Yang

With the deformation reinforcement theory (DRT), numerical simulation of Baihetan arch dam and foundation is carried out. According to the unbalanced forces distribution, fault F18and shear zone LS3318are the key reinforcement regions and unbalanced force of each fault is the corresponding optimal reinforcement force which is to maintain a stable state. To verify the validity of the results of numerical simulation, geomechanical model test of Baihetan arch dam is carried out. By analyzing displacement of corresponding measuring point in the overloading process, and observing failure of transverse section at each elevation, the results show that the unbalanced force distribution of each fault is consistent with the damage law of faults in geomechanical model test.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Baoquan Yang ◽  
Lin Zhang ◽  
Enlong Liu ◽  
Jianhua Dong ◽  
Honghu Zhu ◽  
...  

Geomechanical model testing is an important method for studying the overall stability of high arch dams. The main task of a geomechanical model test is deformation monitoring. Currently, many types of deformation instruments are used for deformation monitoring of dam models, which provide valuable information on the deformation characteristics of the prototype dams. However, further investigation is required for assessing the overall stability of high arch dams through analyzing deformation monitoring data. First, a relationship for assessing the stability of dams is established based on the comprehensive model test method. Second, a stability evaluation system is presented based on the deformation monitoring data, together with the relationships between the deformation and overloading coefficient. Finally, the comprehensive model test method is applied to study the overall stability of the Jinping-I high arch dam. A three-dimensional destructive test of the geomechanical model dam is conducted under reinforced foundation conditions. The deformation characteristics and failure mechanisms of the dam abutments and foundation were investigated. The test results indicate that the stability safety factors of the dam abutments and foundation range from 5.2 to 6.0. These research results provide an important scientific insight into the design, construction, and operation stages of this project.


Sign in / Sign up

Export Citation Format

Share Document