high arch dam
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 57)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
pp. 481
Author(s):  
Yongtao Liu ◽  
Dongjian Zheng ◽  
Christos Georgakis ◽  
Thomas Kabel ◽  
Enhua Cao ◽  
...  

During the operation period, the deformation of an ultra-high arch dam is affected by the large fluctuation of the reservoir water level. Under the dual coupling of the ultra-high dam and the complex water level conditions, the traditional variational analysis method cannot be sufficiently applied to its deformation analysis. The deformation analysis of the ultra-high arch dam, however, is very important in order to judge the dam safety state. To analyze the deformation law of different parts of an ultra-high arch dam, the panel data clustering theory is used to construct a Spatio-temporal characteristic model of dam deformation. In order to solve the difficult problem of the fluctuating displacement of dam deformation with water level effect, three displacement component indexes (absolute quantity, growing, and fluctuation) are proposed to characterize dam deformation. To further optimize the panel clustering deformation model, the objective weight coefficient of clustering comprehensive distance is calculated based on the CRITIC (CRiteria Importance Through Inter-criteria Correlation) method. The zoning rules of the ultra-high arch dam are established by using the idea of the CSP (Constraint Satisfaction Problem) index, and the complex water level of the reservoir is simulated in the whole process. Finally, the dynamic cluster analysis of dam deformation is realized. Through a case study, three typical working conditions including the rapid rise and fall of water level and the normal operation are calculated, and the deformation laws of different deformation zones are analyzed. The results show that the model can reasonably describe the deformation law of an ultra-high arch dam under different water levels, conveniently and intuitively select representative measuring points and key monitoring parts, effectively reducing the analysis workload of lots of measuring points, and improve the reliability of arch dam deformation analysis.


2021 ◽  
Vol 248 ◽  
pp. 113227
Author(s):  
Pengcheng Wei ◽  
Peng Lin ◽  
Haoyang Peng ◽  
Zongli Yang ◽  
Yu Qiao

2021 ◽  
Author(s):  
Yaosheng Tan ◽  
Chunfeng Liu ◽  
Youzhi Liu ◽  
Jingtao Li

Gallery cracks occur commonly in concrete dams, but their cracking mechanism has yet to be effectively revealed. In this paper, the actual temperature, stress change history and cracking process of a gallery area were uncovered, based on the safety monitoring data of cracks in a super-high arch dam. In addition, the basic development and change laws, as well as the corresponding cracking mechanism, were analyzed, and the real causes and influential factors of cracks at the site were revealed, which will provide a reference for the prevention of cracks in similar projects in the future.


Author(s):  
Yuchen Fu ◽  
Yaosheng Tan ◽  
Yu Hu ◽  
Chunfeng Liu ◽  
Lei Pei ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Mingjun Li ◽  
Jiangyang Pan ◽  
Yaolai Liu ◽  
Hao Liu ◽  
Junxing Wang ◽  
...  

The deformation prediction of the dam in the initial stage of operation is very important for the safety of high dams. A hybrid model integrating chaos theory, support vector machine (SVM), and an improved Grey Wolf Optimization (IGWO) algorithm is developed for deformation prediction of dam in the initial operation period. Firstly, the chaotic characteristics of the dam deformation time series will be identified, mainly using the Lyapunov exponent method, the correlation dimension method, and the Kolmogorov entropy method. Secondly, the SVM-IGWO model based on phase space reconstruction (PSR) is established for deformation forecasting of the dam in the initial operation period. Taking SVM as the core, the deformation time series is reconstructed in phase space to determine the input variables of SVM and the GWO algorithm is improved to realize the optimization of SVM parameters. Finally, take the actual monitoring displacement of Xiluodu super-high arch dam as an example. The engineering application example shows that, compared with the existing models, the prediction accuracy of the PSR-SVM-IGWO model established in this paper is improved.


2021 ◽  
Vol 861 (7) ◽  
pp. 072068
Author(s):  
X W Wang ◽  
J R Xu ◽  
L J Xue ◽  
M J He ◽  
W D Zhang ◽  
...  
Keyword(s):  
Arch Dam ◽  

2021 ◽  
Vol 826 (1) ◽  
pp. 012035
Author(s):  
Yuchen Fu ◽  
Yaosheng Tan ◽  
Chunfeng Liu ◽  
Lei Pei ◽  
Yajun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document