Role of upper-most crustal composition in the evolution of the Precambrian ocean–atmosphere system

2018 ◽  
Vol 487 ◽  
pp. 44-53 ◽  
Author(s):  
R.R. Large ◽  
I. Mukherjee ◽  
I. Zhukova ◽  
R. Corkrey ◽  
A. Stepanov ◽  
...  
Elements ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 191-196 ◽  
Author(s):  
Christopher T. Reinhard ◽  
Noah J. Planavsky

The redox state of Earth’s atmosphere has undergone a dramatic shift over geologic time from reducing to strongly oxidizing, and this shift has been coupled with changes in ocean redox structure and the size and activity of Earth’s biosphere. Delineating this evolutionary trajectory remains a major problem in Earth system science. Significant insights have emerged through the application of redox-sensitive geochemical systems. Existing and emerging biogeochemical modeling tools are pushing the limits of the quantitative constraints on ocean–atmosphere redox that can be extracted from geochemical tracers. This work is honing our understanding of the central role of Earth’s biosphere in shaping the long-term redox evolution of the ocean–atmosphere system.


1977 ◽  
Vol 16 (8) ◽  
pp. 2257 ◽  
Author(s):  
Howard R. Gordon ◽  
Michael M. Jacobs

2021 ◽  
Author(s):  
Sem Vijverberg ◽  
Dim Coumou

<p>Heatwaves can have devastating impact on society and reliable early warnings at several weeks lead time are needed. Heatwaves are often associated with quasi-stationary Rossby waves, which interact with sea surface temperature (SST). Previous studies showed that north-Pacific SST can provide long-lead predictability for eastern U.S. temperature, moderated by an atmospheric Rossby wave. The exact mechanisms, however, are not well understood. Here we analyze Rossby waves associated with heatwaves in western and eastern US. Causal inference analyses reveal that both waves are characterized by positive ocean-atmosphere feedbacks at synoptic timescales, amplifying the waves. However, this positive feedback on short timescales is not the causal mechanism that leads to a long-lead SST signal. Only the eastern US shows a long-lead causal link from SSTs to the Rossby wave. We show that the long-lead SST signal derives from low-frequency PDO variability, providing the source of eastern US temperature predictability. We use this improved physical understanding to identify more reliable long-lead predictions. When, at the onset of summer, the Pacific is in a pronounced PDO phase, the SST signal is expected to persist throughout summer. These summers are characterized by a stronger ocean-boundary forcing, thereby more than doubling the eastern US temperature forecast skill, providing a temporary window of enhanced predictability.</p>


2021 ◽  
pp. 78-85
Author(s):  
А. G. Grankov ◽  
◽  
А. А. Milshin ◽  

An accuracy of reproduction of daily variations in the ocean–atmosphere system brightness temperature in the areas of development and movement of tropical hurricanes in the Caribbean Sea and Gulf of Mexico is analyzed. The analysis is based on the data of single and group satellite microwave radiometer measurements. The results are obtained using archival measurement data of SSM/I radiometers from the F11, F13, F14, and F15 DMSP satellites during the period of existence of tropical hurricanes Bret and Wilma. An example is given to demonstrate the use of daily brightness temperatures obtained from DMSP satellites for monitoring the development and propagation of hurricane Wilma.


Sign in / Sign up

Export Citation Format

Share Document