scholarly journals Enhancing power systems operational flexibility with ramp products from flexible resources

2022 ◽  
Vol 202 ◽  
pp. 107599
Author(s):  
Sumanth Yamujala ◽  
Anjali Jain ◽  
Sreenu Sreekumar ◽  
Rohit Bhakar ◽  
Jyotirmay Mathur
2019 ◽  
Vol 11 (16) ◽  
pp. 4424 ◽  
Author(s):  
Chunning Na ◽  
Huan Pan ◽  
Yuhong Zhu ◽  
Jiahai Yuan ◽  
Lixia Ding ◽  
...  

At present time, China’s power systems face significant challenges in integrating large-scale renewable energy and reducing the curtailed renewable energy. In order to avoid the curtailment of renewable energy, the power systems need significant flexibility requirements in China. In regions where coal is still heavily relied upon for generating electricity, the flexible operations of coal power units will be the most feasible option to face these challenges. The study first focused on the reasons why the flexible operation of existing coal power units would potentially promote the integration of renewable energy in China and then reviewed the impacts on the performance levels of the units. A simple flexibility operation model was constructed to estimate the integration potential with the existing coal power units under several different scenarios. This study’s simulation results revealed that the existing retrofitted coal power units could provide flexibility in the promotion of the integration of renewable energy in a certain extent. However, the integration potential increment of 20% of the rated power for the coal power units was found to be lower than that of 30% of the rated power. Therefore, by considering the performance impacts of the coal power units with low performances in load operations, it was considered to not be economical for those units to operate at lower than 30% of the rated power. It was believed that once the capacity share of the renewable energy had achieved a continuously growing trend, the existing coal power units would fail to meet the flexibility requirements. Therefore, it was recommended in this study that other flexible resources should be deployed in the power systems for the purpose of reducing the curtailment of renewable energy. Furthermore, based on this study’s obtained evidence, in order to realize a power system with high proportions of renewable energy, China should strive to establish a power system with adequate flexible resources in the future.


2021 ◽  
Vol 304 ◽  
pp. 117763
Author(s):  
Sumanth Yamujala ◽  
Priyanka Kushwaha ◽  
Anjali Jain ◽  
Rohit Bhakar ◽  
Jianzhong Wu ◽  
...  

Author(s):  
Hanyan Huang ◽  
Ming Zhou ◽  
Shiyi Zhang ◽  
Lijun Zhang ◽  
Gengyin Li ◽  
...  

2018 ◽  
Vol 3 (7) ◽  
pp. 28 ◽  
Author(s):  
Ignatius K. Okakwu ◽  
P. E. Orukpe ◽  
E. A. Ogujor

The fault current levels of an interconnected power network have witnessed a general rise due to increase in power demand. This rise in fault current if not properly mitigated may exceed the maximum ratings of the switchgear. Many conventional protective devices such as series reactors, fuses, high impedance transformers, etc. have high cost, increased power loss and loss of power system stability, which may ultimately cause lower reliability and reduced operational flexibility. Superconducting Fault Current Limiter (SFCL) is a flexible alternative to the use of conventional protective devices, due to its effective ways of reducing fault current within the first cycle of fault current, reduced weight and zero impedance during normal operation. This paper reviews various concepts of SFCLs and its applications in power systems.


Author(s):  
Andreas Ulbig ◽  
Matthias A. Bucher ◽  
Göran Andersson

Author(s):  
Nicolas Demougeot ◽  
Alexander Steinbrenner ◽  
Wenping Wang ◽  
Matt Yaquinto

Abstract Since the advent of premix combustion technology in industrial gas turbines, regular manual combustion tuning and engine adjustments have been necessary to maintain engines within emission regulatory limits and to control combustion dynamics (pulsations) for hardware integrity. The emissions and pulsation signatures of premix combustors are strongly driven by ambient conditions, engine performance, degradation and fuel composition. As emissions limits became more stringent over the years, higher combustion dynamics were encountered and challenges to maintain acceptable settings after yearly combustion inspections were regularly encountered. This challenge was further increased as sites operating advanced Gas Turbines (GT) eliminated Combustion Inspections (CI) and required uninterrupted generation at optimum settings for up to three years. The case for automated tuning systems became evident for the Industrial Gas Turbine (IGT) market in the mid 2000’s and different IGT manufacturers and service providers began developing them. Power Systems Manufacturing (PSM) developed the AutoTune (AT) system in 2008 and has since installed it in over fifty units, accumulating close to a million hours of operation. The history of PSM’s AT system development as well as a description of its fundamental principles and capabilities are discussed. The power generation market is changing rapidly with the injection of renewables, thus driving the demand for operational flexibility, the design of PSM’s multi-platform compatible, AutoTune system; allowing for increased peak power, extended turndown and transient tuning is discussed. The paper also describes, how, using the same tuning principles, the application for an AutoTune system can be extended to the Balance Of Plant (BOP) equipment.


Sign in / Sign up

Export Citation Format

Share Document