superconducting fault current limiter
Recently Published Documents


TOTAL DOCUMENTS

730
(FIVE YEARS 140)

H-INDEX

33
(FIVE YEARS 5)

2021 ◽  
Vol 23 (6) ◽  
pp. 475-480
Author(s):  
Yacine Ayachi Amor ◽  
Gaëtan Didier ◽  
Farid Hamoudi

Multi-terminal DC network (MTDC) offers great potential for long distance huge power delivery with multi-direction power transmission capability. However, the key obstacle in a realization of MTDC is the lack of existing commercial protection device can withstand the DC fault that rises rapidly and surge tenfold within several milliseconds over the whole system. The new technology called Superconducting Fault Current Limiter (SFCL) could bring a solution to the main bottleneck of the MTDC networks. In this work, an electro-thermal model of resistive type SFCL in series with a hybrid DC circuit breaker is proposed to protect a five terminal MTDC network. The numerical analysis carried out using (EMTP-RV®) software, and the simulation results show how effectively the SFCL can reduce the fault current and increase the breaking capability. Moreover, system stability is remarkably improved.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6944
Author(s):  
Sławomir Kozak

A superconducting fault current limiter (SFCL) for medium voltage networks cooled by a cryocooler was designed, built and tested by the current author. For the construction of this limiter, a high-temperature second generation superconducting tape (HTS 2G)—SF12100—was used. In this limiter, it is possible to change the working temperature. The possibility of changing the operating temperature allows for adjusting the parameters of the limiter to the electric power needs. Adjusting the parameters of the limiter to the power needs is a key problem to solve, resulting from the ambiguous characteristics of HTS tapes. Cooling with a cryocooler is the only solution in the case of a limiter for power industry applications. The electric power mechanism does not tolerate any liquids. After analyzing the experimental results and after analyzing the results from the numerical models of the limiter, the concepts of using superconductors to limit current in the power industry were changed: the transition from a superconducting fault current limiter (SFCL) to a superconducting surge current limiter (SSCL). Transition to the limiter operation system—surge current limitation—is associated with the reduction in the limiter operation time. The advantages of the transition from the SFCL to SSCL work system are presented.


2021 ◽  
Vol 891 ◽  
pp. 89-98
Author(s):  
Cheng Yu Ye ◽  
Zhao Ye Wang

Since the discovery of superconductors, research has shifted from simple metals to alloys and further to complex compounds. As the record of critical temperature gradually increases, more opportunities and challenges have emerged. The Bardeen-Cooper-Schrieffer theory failed to explain certain observations of unconventional superconductors. However, breakthroughs have been made on the new understanding of unconventional superconductors. This article will introduce various challenges to and opportunities for the application of unconventional superconductors, including the high-temperature superconducting fault-current limiter and the superconducting energy-storage system.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3579
Author(s):  
Eva Cuninková ◽  
Marcela Pekarčíková ◽  
Michal Skarba ◽  
Jozef Krajčovič ◽  
Matej Pašák

The strain behavior of SiC/Stycast 2850 FT composites under thermomechanical loading using a finite element analysis (FEA) was studied. These composites can serve as thermal stabilizers of high-temperature superconducting (HTS) tapes during limitation event in resistive superconducting fault current limiter (R-SCFCL) applications. For this purpose, the thermomechanical properties of four composite systems with different filler content were studied experimentally. The FEA was calculated using an ANSYS software and it delivered useful information about the strain distribution in the composite coating, as well as in particular layers of the modified HTS tapes. The tapes were subjected to bending over a 25 cm core, cooled in a liquid nitrogen (LN2) bath, and finally, quenched from this temperature to various temperatures up to 150 °C for a very short time, simulating real limitation conditions. The outputs from simulations were also correlated with the experiments. The most promising of all investigated systems was SB11-SiC20 composite in form of 100 µm thick coating, withstanding a temperature change from LN2 up to 120 °C.


Sign in / Sign up

Export Citation Format

Share Document