An investigation for battery energy storage system installation with renewable energy resources in distribution system by considering residential, commercial and industrial load models

2021 ◽  
pp. 103493
Author(s):  
Pawan Saini ◽  
Lata Gidwani
2014 ◽  
Vol 986-987 ◽  
pp. 371-376 ◽  
Author(s):  
Yan Zhang ◽  
Bo Guo ◽  
Tao Zhang

This paper discusses using the battery energy storage system (BESS) to mitigate intermittency and sustain stability of distribution system integrating high penetration level of renewable energy resources (RER). The goal of the control is to have the BESS provide as much smoothing as possible, so that the RER power can be dispatchable in some kind and reliable. The effectiveness of model predictive control (MPC) based approach proposed in this paper have been tested by detail case study, also compared with the day ahead control strategy, load following strategy , and normal situation without energy storage which are usually used before. The result shows that the proposed MPC based approach is more practical, and more robust.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1339 ◽  
Author(s):  
Hee-Jun Cha ◽  
Sung-Eun Lee ◽  
Dongjun Won

Energy storage system (ESS) can play a positive role in the power system due to its ability to store, charge and discharge energy. Additionally, it can be installed in various capacities, so it can be used in the transmission and distribution system and even at home. In this paper, the proposed algorithm for economic optimal scheduling of ESS linked to transmission systems in the Korean electricity market is proposed and incorporated into the BESS (battery energy storage system) demonstration test center. The proposed algorithm considers the energy arbitrage operation through SMP (system marginal price) and operation considering the REC (renewable energy certification) weight of the connected wind farm and frequency regulation service. In addition, the proposed algorithm was developed so that the SOC (state-of-charge) of the ESS could be separated into two virtual SOCs to participate in different markets and generate revenue. The proposed algorithm was simulated and verified through Matlab and loaded into the demonstration system using the Matlab “Runtime” function.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2003 ◽  
Author(s):  
Ujjwal Datta ◽  
Akhtar Kalam ◽  
Juan Shi

To deal with the technical challenges of renewable energy penetration, this paper focuses on improving the grid voltage and frequency responses in a hybrid renewable energy source integrated power system following load and generation contingency events. A consolidated methodology is proposed to employ a battery energy storage system (BESS) to contribute to voltage regulation through droop-type control and frequency regulation by assimilated inertia emulation (IE) and droop-type control. In addition, a novel frequency-dependent state-of-charge (SOC) recovery (FDSR) is presented to regulate BESS power consumption within the FDSR constraints and recharge the battery during idle periods whenever needed. The efficacy of the proposed BESS controller is demonstrated in an IEEE-9 bus system with a 22.5% photovoltaics (PV) and wind penetration level. The simulation results obtained manifest the satisfactory performance of the proposed controller in regulating simultaneous voltage and frequency in terms of lower rate of change of frequency and better frequency nadir. Furthermore, the proposed FDSR demonstrates its superiority at the time of SOC recovery compared to the conventional approach.


Sign in / Sign up

Export Citation Format

Share Document